
Scalable Bayesian Human-Robot Cooperation in Mobile Sensor Networks

Frédéric Bourgault, Aakash Chokshi, John Wang, Danelle Shah, Jonathan Schoenberg,

Ramnath Iyer, Franco Cedano and Mark Campbell

Abstract— In this paper, scalable collaborative human-robot
systems for information gathering applications are approached
as a decentralized Bayesian sensor network problem. Human-
computer augmented nodes and autonomous mobile sensor
platforms are collaborating on a peer-to-peer basis by sharing
information via wireless communication network. For each
node, a computer (onboard the platform or carried by the
human) implements both a decentralized Bayesian data fusion
algorithm and a decentralized Bayesian control negotiation
algorithm. The individual node controllers iteratively negotiate
anonymously with each other in the information space to find
cooperative search plans based on both observed and predicted
information that explicitly consider the platforms (humans
and robots) motion models, their sensors detection functions,
as well as the target arbitrary motion model. The results
of a collaborative multi-target search experiment conducted
with a team of four autonomous mobile sensor platforms and
five humans carrying small portable computers with wireless
communication are presented to demonstrate the efficiency of
the approach.

I. INTRODUCTION

This paper proposes an innovative scalable Bayesian ap-

proach for coordinating a network of humans and robots

involved in information gathering type missions. The concept

of a meta-node, to represent mobile robotic sensors and

human-computer augmented systems, is introduced as a

fundamental building block of a decentralized Active Sensor

Network (ASN) architecture which couples decentralized

communication, estimation and control.

In this approach the human-computer augmented node

constitute a mobile sensor unit where the human provides

both the sensors and their carrying “platform”, while the

portable computer runs both a decentralized Bayesian fusion

node and a decentralized Bayesian control negotiation algo-

rithm. The networked controller nodes iteratively negotiate

anonymously in the information space to find cooperative

search plans based on both observed and predicted informa-

tion that explicitly consider the humans and robots motion

models, their sensors detection functions, as well as the

targets arbitrary motion model.

This type of decentralized architecture offers increased

efficiency, reactivity, robustness and scalability by avoiding

the overheads, bottlenecks and single points of failure associ-

ated with centralized structures. The proposed methodology

enables synergistic human-machine interactions, with appli-

cations search and rescue, planetary exploration, mapping,
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environmental monitoring, disaster relief, urban warfare,

surveillance and security systems.

This paper is organized as follows. First, Sec. II describes

the Active Sensor Network architecture and reviews the

decentralized Bayesian data fusion algorithm. Sec. III re-

views the team utility structure and explains the decentralized

iterative Bayesian control negotiation algorithm. Sec. IV

covers the search problem. Sec. V presents the details of a

search experiment and discusses some of the results. Finally,

conclusions and ongoing research directions are outlined in

Sec. VI.

II. ARCHITECTURE

The general decentralized framework proposed for co-

ordinating the search effort of a team of mobile robotic

sensors and human-computer augmented units combines gen-

eral hierarchical decentralized data fusion and decentralized

hierarchical control into a coherent architecture. This type of

approach is related to Active Sensor Networks (ASNs) [14].

Figure 1 depicts an example of a simple information

driven decentralized mobile sensor network with three “meta-

nodes”. The black circles represent high level control nodes

in different hierarchical control layers, while the white cir-

cles represent decentralized data fusion nodes that compile

hierarchical levels of information used by the control nodes.

For each meta-node, or mobile sensor unit, the Platform

block represents the sensor carrying platform with its internal

low-level feedback Controller, physical Body and associated

mobility characteristics (i.e. robotic vehicle or human body),

and payload Sensor(s). This representation of mobile sensor

nodes is general and may be applied to fully autonomous

robots, remote-controlled platforms, manned vehicles as well

as humans, with natural and/or artificial sensors. The strate-

gic and tactical planning levels may be fully automated, or

based on human decisions. For simplicity in this paper, a

single layer of decentralized control, i.e. tactical trajectory

planning, and low-level data fusion are implemented in fully

autonomous fashion. Both functions are supported by a

portable computers carried by the humans and the robots’

onboard computers over a wireless had-hoc network.

A. Decentralized Bayesian Filtering

In Bayesian analysis any unknown quantity of interest is

considered a random variable. The state of knowledge about

such a random variable is entirely expressed in the form of

a Probability Density Function (PDF). New information in

the form of a probabilistic measurement or observation is

combined with the previous PDF using Bayes’ theorem in

order to update the state of knowledge. This newly updated

PDF, along with utility measures based on its prediction,
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Fig. 1. Three meta-nodes used to notionally define a mobile Bayesian
sensor network with human and robotic elements. The white circles linked
by the dashed lines represent the general hierarchical decentralized data
fusion network, while the black circles represent the nodes in the networked
planning architecture.

forms the quantitative basis on which all inferences, or

control decisions are made.

For the multi-target search problem, with a number Ns

of search sensors and Nt of targets, the random variable of

interest is the joint targets state vector, denoted xt
k = {x

tj

k :

j = 1, ..., Nt} where x
tj

k ∈ ℜnxt represents the individual

state vector for the jth target at time step k. In general, xt
k

describes the targets locations but could also include their

attitudes, velocities and other properties. In this paper, the

superscripts tj and si indicate a relationship to the target j

and the sensor onboard the search vehicle i respectively. The

subscripts are used to indicate the time index. Hence the joint

sensors state are denoted xs
k = {xsi

k : i = 1, ..., Ns} where

xsi

k ∈ ℜnxs . For simplicity of the notation, it is assumed

in this paper that only one payload/search/detection sensor

and one onboard localization sensor are mounted on each

individual mobile platform.

At each time step k, the targets and the sensors are in their

respective unknown states xt
k and xs

k While the targets are

transiting to their new states, xt
k+1

, the sensors, based on

their anticipation of both their own and the targets’ future

states, select and execute a control action us
k = {usi

k : i =
1, ..., Ns}, arrive at their new states, xs

k+1
, and receive a set

of observations lzs
k+1

= {lizsi

k : i = 1, ..., Ns} of their

own states, and a set of observations szt
k+1

= {siz
tj

k :
i = 1, ..., Ns, j = 1, ..., Nt} of the targets’ states and the

associated payoff.

Let Ik be the vector of all information available at time

step k as defined by

Ik ≡ {I0,
szt

1:k,us
0:k−1

, lzs
1:k}, k = 1, ..., Nk. (1)

where the terms szt
1:k, us

0:k−1
and lzs

1:k represent the entire

histories up to time step k of the targets observations, control

actions and platforms localization observations, respectively.

Notice that the global information vector may be written in

terms of the partial information vectors as in Ik = {I
tj

k : i =

1, ..., Nt} where I
tj

k ≡ {I
tj

0 , sz
tj

1:k,us
0:k−1

, lzs
1:k} contains all

the information available about target tj up to step k.

Similarly, let Isi

k be the vector of all information available

about sensor si at time step k as defined by

Isi

k = {Isi

0 ,usi

0:k−1
, lizsi

1:k} ⊂ Ik, k = 1, ..., Nk. (2)

Also the joint sensor state information vector Is
k may be

written in terms of the above partial vectors, Is
k = {Isi

k : i =
1, ..., Ns}.

The purpose of the Bayesian filter is to recursively pro-

duce an estimate for the targets joint probability density,

p(xt
k|Ik) = p(xt1

k , ...,xNt

k |Ik) given the current information

vector Ik. However, doing is intractable for large numbers

of targets since the computational cost and memory usage

rapidly become prohibitive as they increase exponentially

with the number of targets and the number of states for each

target [19]. In this paper, in an effort to limit the complexity

of maintaining such a high dimensional distribution, the

targets individual densities are assumed to be independent

of each other. This implies that a different Bayesian filter

may be instantiated to maintain a separate independent PDF,

denoted p(x
tj

k |I
tj

k ), for each target. Fortunately, in practice

it is often the case that the targets are completely unrelated,

e.g. two independent hikers lost in the bush. Even when the

targets are loosely coupled by sharing the same process, e.g.

drifting life-rafts exposed to the same wind environment, it

may still be reasonable to assume independence between the

individual target densities as the induced estimation error is

conservative and often considered negligible.

The analysis starts by determining a prior PDF

p(x
tj

0 |I
tj

0 ) ≡ p(x
tj

0 ) for each target state at time 0, given

the vector I
tj

0 of all available prior information, including

past experience and domain knowledge. If nothing is known

other than initial bounds on the target state vector, then a

least informative uniform PDF is used as the prior. Once

the prior distribution has been established, the PDF at time

step k, p(x
tj

k |I
tj

k ), can be constructed recursively using the

prediction and update equations alternatively.
1) Prediction: Suppose the system is at time step k − 1

and the latest update for the jth target, p(x
tj

k−1
|I

tj

k−1
), is

available. This prior PDF is predicted forward to time step
k using the following Chapman-Kolmogorov equation

p(x
tj

k |I
tj

k−1
) =

∫

p(x
tj

k |x
tj

k−1
)p(x

tj

k−1
|I

tj

k−1
)dx

tj

k−1
(3)

where p(x
tj

k |x
tj

k−1
) is a probabilistic Markov motion model.

Also referred to as the process model, it describes the

probability of transition of the target states form a given prior

state, x
tj

k−1
, to a destination state, x

tj

k . Deriving the process

model from the equations of motion of the target and the

probability distribution on their inputs is out of the scope

of this paper. Ref. [7], however, provides some examples of

realistic process models with constraints. For more details

on how to derive p(x
tj

k |x
tj

k−1
) from the systems equations

refer to [4].

2) Update: At time step k, a new set of observations
sz

tj

k = {s1z
tj

k , ..., sNs z
tj

k } becomes available where siz
tj

k is

taken from platform si at state xsi

k . For each sensor si, the
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conditional detection probability density function for target

tj at time step k, referred to as the detection sensor model,

is denoted p(siz
tj

k |x
tj

k ,xsi

k ) and is assumed to be known. It

is a mapping of target tj detection probability distribution

given the target and the sensor states, x
tj

k and xsi

k .

Given a measurement outcome, siz
tj

k = siz
tj

k ∈
{Dk, Dk}, the corresponding slice in the observation model

p(siz
tj

k = siz
tj

k |x
tj

k ,xsi

k ) is function of the platform and the
target states alone and will be referred to as an observation
likelihood, i.e. the detection likelihood for an event Dk, and
the miss likelihood for an event Dk. Since the sensor state
platform state xsi

k is uncertain the Bayesian update may be
performed as follows

p(x
tj

k |I
tj

k )=Kp(x
tj

k |I
tj

k−1
)

Ns
∏

i=1

∫

p(siz
tj

k |x
tj

k ,x
si

k )p(xsi

k |Isi

k ) dxsi

k

(4)where K is the normalization factor given by

K
−1=

∫

p(x
tj

k |I
tj

k−1
)

Ns
∏

i=1

∫

p(siz
tj

k |x
tj

k ,x
si

k )p(xsi

k |I
si

k ) dxsi

k dx
tj

k (5)

and where the updated sensor state PDF for each sensor
si is obtained from the output of an Extended Kalman
Filter (EKF) implemented for localization based on fusing
GPS and electronic compass measurements, i.e. p(xsi

k |Isi

k ) =
N (x̂si

k|k,Psi

k|k), where x̂si

k|k and Psi

k|k are the latest state

estimate and covariance matrix, respectively, following the
control action usi

k and ensuing localization observation
lizsi

k = lizsi

k . The integral term in (4) corresponds to
the observation likelihood expectation and can be rewritten

simply as p(siz
tj

k |x
tj

k , Isi

k ) leading to the following version
of the update equation

p(x
tj

k |I
tj

k )=Kp(x
tj

k |I
tj

k−1
)

Ns
∏

i=1

p(siz
tj

k |x
tj

k , I
si

k ). (6)

B. Active Bayesian Sensor Network

Packaging a physical sensor with its own Bayesian fil-

tering processor is an attractive way of making the sensor

mobile and modular. Fig. 2 depicts algorithmically the nodal

Bayesian filter for a single target t and how it interacts with

the Controller, the Platform, and the Sensor in a network with

node-to-node communication. The Platform block represents

the actuators and dynamics of both the sensor and the

mobile vehicle on which the sensor is mounted. At time

step k − 1, based on the latest beliefs about the targets

p(xt
k−1

|Ik−1),∀j ∈ [1, ..., Nt] and the sensor state estimate

x̂si

k−1|k−1
, the local Controller sends a command usi

k−1
to

the Platform to place the sensor in a desired position xsi

kdes

with respect to the world to take the next set of observations.

When it comes in, the new observation likelihood expectation

p(sizt
k|x

t
k, Isi

k ), is fused to the predicted PDF, p(xt
k|Ik−1)

(lower product node in Fig. 2), to form the new nodal PDF

estimate based on an incomplete local information vector

denoted si Îk, as in p(xt
k|Ik−1,

sizt
k,usi

k , lizsi

k ) = p(xt
k|

si Îk).
The combined PDF estimate p(xt

k|
si Îk ∪ sj Îk) based on

two incomplete but not mutually exclusive information vec-

tors, si Îk and sj Îk, at node si and sj is obtained from

p(xt
k|

si Îk ∪ sj Îk) ∝
p(xt

k|
si Îk)p(xt

k|
sj Îk)

p(xt
k|

si Îk ∩ sj Îk)
(7)

where p(xt
k|

si Îk ∩ sj Îk) is the estimate based on the com-

mon information. The common PDF estimate is referred to

as the channel filter estimate.

So, as shown on Fig. 2, after fusion of the local likeli-

hood expectation, the latest nodal estimate is then sent to

neighboring nodes via Channel Filters whose purpose are to

maintain a density estimate based on the common informa-

tion shared between each two two nodes. In order to prevent

double-counting, the Channel Filters use their estimates to

remove the common information from the nodal estimate.

The residual which corresponds to the new information accu-

mulated by the emitting node since the last communication,

through sensor observations and communication with other

neighbors, is then communicated to the Channel Filter of

the receiving node to update both the receiver’s nodal and

channel estimates. Likewise, the emitting node also receives

new information from its other neighbors which it fuses

(upper product node in Fig. 2) to its current local estimate,

p(xt
k|

si Îk).
The channel filter guarantees the nodes to converge to the

global estimate given the network propagation delay. The

details of the general channel filter are introduced in [5]

where it is also proposed to evaluate the amount of estimation

error using the following Hellinger affinity measure

D(pi‖pj) = 2 ln

∫

√

pi(x
t
k)pj(x

t
k) dxt

k (8)

which is a monotonic distance metric between two densities

pi and pj [11]. The metric values range from 0, when the

densities are identical, to −∞, when they have nothing

in common, i.e.
∫

√

pi(x
t
k)pj(x

t
k) dxt

k = 0. The channel

manager also uses this divergence measure to determine

when to communicate on each channel [5]. For more details

on the general decentralized data fusion algorithm, refer to

Chapter 5 of [4].

A major advantage of implementing channel filters comes

from the fact that if transmission packets are lost in the

communication process, the filter does not update its esti-

mate allowing the information to be recovered on the next

communication step. Notice that since the nodes only know

their immediate neighbors and are ignorant of the global

network topology they cannot differentiate the source of

the information they receive. One necessary condition to

maintain proper accounting of the information is that the

network connectivity must be acyclic [9]. In other words,

no communication loops must exist between the nodes that

would enable the information to cycle through multiple

times.

III. DECENTRALIZED COOPERATIVE CONTROL

Each of the Ns sensor platform is governed by its own

dynamic model in the form

xsi

k+1
= fsi

k (xsi

k ,usi

k ) + wsi

k , (9)

subject to the following set of kino-dynamic constraints and

control bounds

gsi

k (xsi

k ,usi

k ) ≤ 0 (10)

usi

LB(xsi

k ) ≤ usi

k ≤ usi

UB(xsi

k ) (11)

2344

Authorized licensed use limited to: Cornell University. Downloaded on August 19, 2009 at 10:22 from IEEE Xplore.  Restrictions apply. 



Fig. 2. General active Bayesian sensor node with channel filters for node-to-node communication.

where usi

k is the active sensor control input vector, wsi

k is

a zero-mean process noise of known covariance and usi

LB

and usi

UB are the lower and upper bounds respectively on the

control input in function of the state. The controller objective

is to produce a command that will place the system in a

desired state.

A. Optimal Trajectory

For a multi-sensor system, an optimal cooperative control

solution must the group decision that is jointly optimal.

Given Nk lookahead steps, the global utility function is

denoted J(u, Nk), where u = u1:Nk
= {us1

1:Nk
, ...,u

sNs

1:Nk
}

is the control action sequence for all platforms over a time

horizon of length T = Nk δt. The optimal control trajectory

u∗ is the sequence that maximizes that utility subject to the

control bounds (11) and the constraints (10).

u∗ = {us1∗
1:Nk

, ...,u
sNs∗
1:Nk

} = arg max
u

J(u, Nk) (12)

To be truly optimal, the trajectory should be evaluated for

the entire duration of the mission. However, the computa-

tional cost for such optimal plans is subject to the “curse of

dimensionality”. With increasing lookahead depth and num-

ber of agents, the solution becomes intractable. In practice

only solutions for a restricted number of lookahead steps

are possible. One way to increase the lookahead without

significantly increasing the cost of the solution is to have a

piecewise constant control sequence (see [12] and [8]) where

each control parameter is maintained over a specified number

of time steps. Such control solutions are said to be quasi-

optimal as they compromise the global optimality of the

control solution for a lower computation cost, but neverthe-

less, depending on the problem at hand and because of their

anticipative characteristic, often provide better trajectories

than the ones computed with the same number of control

parameters but with shorter time horizons. A rolling time

horizon solution is when the planned trajectory is recomputed

at short intervals to keep the lookahead constant as the agents

progress forward. At time step k, the utility for a given

horizon depth of Nk steps will be denoted Jk(u, Nk) with

u = uk:k+Nk−1 being the action sequence starting at step k.

B. Team Utility Structure

The global utility Jk can be decomposed into its individual

components as in

Jk(u, Nk) =

Ns
∑

i=1

Jsi

k (u, Nk) =

Ns
∑

i=1

Jsi

k (usi ,usi , Nk) (13)

where each Jsi

k : R
ni 7→ R corresponds to the reward

received by the ith decision maker within a team for a control

sequence usi = usi

k:k+Nk−1
given the teammates strategy

usi = {u
sj

k:k+Nk−1
: j 6= i}. Such situation, where a decision

maker’s likely reward depends on the actions of others is

called a game. In a game, a decision maker needs to choose

a strategy that maximizes his utility not only based on his

individual preferences alone, but on the likely actions of the

other teammates as well. The optimal control sequence u∗

satisfies the following person-by-person optimality condition,

also referred to as the Nash equilibrium solution [15]. That

is

Jsi

k (u∗, Nk) ≥ Jsi

k (usi ,usi∗, Nk), ∀usi ∈ Usi ,∀i (14)

where usi∗ = {u
sj∗
k:k+Nk−1

: j 6= i}. At equilibrium, an

individual cannot diverge from his Nash strategy without

decreasing his utility. A game is inherently a distributed

problem and as such is well suited to be solve by distributed

computation approaches.

C. Distributed Iterative Partial Optimizations for Control

Negotiation

In this section it is proposed to approach the multi-vehicle

multi-sensor optimization problem (12) as a distributed com-

putation problem [2]. By taking advantage of the resources

from multiple processors, distributed computation methods

have a significant speed advantage over centralized methods.

The control problem (12) is broken down into smaller com-

ponents. At every iteration, each processor optimizes its own

component and communicate the result on the network. The

proposed block-iterative non-linear algorithm is a coordinate

descent type technique. It consists in iteratively fixing all

the components of u, except for the ith block-component and

then maximizing Jk(u, Nk) = Jk(usi ,usi , Nk) with respect

to usi , and repeating for all components until convergence,

i.e. until condition (14) is satisfied.

When the maximizations with respect to the different

components, usi’s, are carried out simultaneously it may be

referred to as a Jacobi type algorithm. When the maximiza-

tions are performed sequentially for each component, it is

referred to as a Gauss-Siedel type algorithm [2].

Each optimization iteration l requires the parallel, or

sequential, solution of the individual optimization problems

u
si∗
|l = arg max

u
si

J
si

k (usi ,u
si

|l−1
, Nk) = arg max

u
si

Jk(usi ,u
si

|l−1
, Nk)

(15)

where usi

|l−1
corresponds to the information (possibly ob-

solete) controller i has about the other teammates decisions,

and usi∗
|l is the corresponding best response solution of

decision maker i at iteration step l. As such, (usi∗
|l ,usi

|l−1
)

is a pareto-optimal solution. The algorithm has converged
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when the best response to everyone else’s best response

is fixed. In practice, the iterations are stopped when the

optimization error has decreased under a desired accuracy

threshold, i.e. when δusi∗
|l = usi∗

|l − usi

|l−1
< εi,∀i. It

is important to notice however that such an equilibrium

point might constitute a local maximum of Jk. Notice that

the number of local maxima increases with the number of

components in the planning sequence. In some situations, the

optimization algorithm might get stuck oscillating between

different equilibrium points. To prevent this sort of situation,

a relaxation update equation is used

usi

|l = usi

|l−1
+ αl(u

si∗
|l − usi

|l−1
) = (1 − αl)u

si

|l−1
+ αlu

si∗
|l
(16)

where αl ∈]0, 1] is the stepping or relaxation parameter

that specifies the amount by which the solution is moved

towards the best response. The relaxation parameter may

vary throughout the negotiation process. For example, the

algorithm may start with a value close to one in order to

converge quickly to a coarse estimate, and then progressively

decreased towards zero to refine the solution. Experience has

also shown that a random αl is greatly useful to break the

symmetries causing the algorithm to oscillate.

Reference [20] introduced a slightly different algorithm

that exploits this idea of adding a stochastic element to

the update equation. That algorithm was successfully ap-

plied in [10] to a multi-vehicle control problem for target

identification. Simulated annealing is another optimization

technique that uses stochastic updates to get out of local

maxima. A version of the distributed evolutionary simulated

annealing technique presented in [1] is also currently under

investigation.

D. Bayesian Negotiator

As discussed in the above section, in a standard distributed

computation approach, after each iteration l the controller

processor i would need the components from the other

the controllers usi

|l−1
in order to evaluate the global utility.

This implicitly means that processor i would require the

knowledge of the other sensors’ location or characteristics,

e.g. observation model and vehicle model, and would raise

scalability issues. Rather, each controller builds an estimate

of the future target PDF based on the current estimate and the

predicted contributions received from the teammates. Based

on this estimate, an appropriate reaction is evaluated.

Fig. 3. Bayesian negotiator in a fully connected network with broadcast
communications.

Fig. 3 graphically depicts the controller negotiation

algorithm for a single stationary target t. At a given

time step k and iteration l, the controller i fuses the

latest density estimate p(xt
k|Ik) obtained from its fu-

sion node with the predicted observation likelihoods

p(sj zt
k+1:k+Nk|l−1

|xt
k, I

sj

k+Nk
)’s associated with the opti-

mized components u
sj

|l−1
’s from all the other processors j 6=

i computed on the previous iteration. Based on the resulting

predicted density estimate p(xt
k|Ik, I

s\si

k+Nk\k|l−1
), the best

response usi∗
|l is computed and the component usi

|l is updated.

If the optimization has not converged, the corresponding

observation likelihood p(sizt
k+1:k+Nk|l

|xt
k, Isi

k+Nk
) is then

broadcasted to the other controllers for another iteration.

Otherwise, usi∗ ≈ usi

|l → usi

k+1:k+Nk
is sent to the Platform

for execution. In this paper the individual optimization prob-

lems are solved using a constrained non-linear programming

technique called Sequential Quadratic Programming (SQP)

[16].

Notice that the negotiation algorithm as presented above is

valid only for a stationary target, i.e. there is no process or

prediction step involved. To take into account the process

model, instead of being communicated in pre-combined

blocks as p(sizt
k+1:k+Nk|l−1

|xt
k, Isi

k+Nk
)’s, ∀i, the set of

all the predicted observation likelihoods from each con-

troller i would need to be broadcasted separately, as in

{p(sizt
k+n|l−1

|xt
k, Isi

k+n) : n = 1, ..., Nk}’s, ∀i, and stored

so they could be fused at the right time in the optimization

step. This would of course increase significantly the com-

munication loads.

Also, the above iterative algorithm can be executed asyn-

chronously. As discussed in [3], in an asynchronous imple-

mentation, the processors are allowed to iterate at their own

pace on their respective component and are not required

to wait to receive all messages generated during the previ-

ous iteration. If the latest predicted observation likelihood

updated by some other processor is not available, then

some outdated likelihood is used instead. Evidences suggest

that asynchronous iterations converge faster than their syn-

chronous counterparts [3]. The details of an asynchronous

implementation of the above Jacobi algorithm robust to

communication delays and transmission failures with point-

to-point communication is out of the scope of this paper and

will be the subject of an ulterior publication.

IV. MULTI-TARGET SEARCH UTILITY

This section describes how, using the output from the

filter equations from Sec. II-A, the performance of a multi-

vehicle search plan may be evaluated by determining the

‘cumulative’ probability of detection for each target. An

equivalent but different derivation is presented in [6]. Further

details on the searching problem can also be found in [18]

and [17] (Chap.9).

Let the detection likelihood expectation for target tj by

sensor si at time step k be given by p(siz
tj

k = Di
k|x

tj

k , Isi

k )
where Di

k represents a ‘detection’ event by the sensor on

vehicle si at time k. The likelihood of ‘miss’ by the same

sensor is given by its complement p(siz
tj

k = D
i

k|x
tj

k , Isi

k ) =
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1 − p(Di
k|x

tj

k , Isi

k ). The combined ‘miss’ likelihood for all

the vehicles at time step k is simply the multiplication of the

individual ‘miss’ likelihood expectations for that target

p(Dk|x
tj

k , Is
k) =

Ns
∏

i=1

p(D
i

k|x
tj

k , I
si

k ) (17)

where Dk = D
1

k ∩ ...∩D
Ns

k represents the event of a ‘miss’

observation by every sensor at time step k.

If the normalization factor K is neglected, the update

equation (6) can be rewritten as the following pseudo-update

equation.

p(x
tj

k |I
tj

1:k)
′
= p(x

tj

k |I
tj

k−1
)
′

Ns
∏

i=1

p(siz
tj

k |x
tj

k , I
si

k ) (18)

As shown in [6], the probability that a target gets detected

for the first time at time step k, namely the probability of

detection at time step k, is denoted p
tj

k = p(D1:k−1, Dk). It

corresponds to the reduction in volume under the pseudo-

density function when it is updated with the combined

‘detection’ likelihood expectation, denoted p(Dk|x
tj

k , Is
k) =

[

1 − p(Dk|x
tj

k , Is
k)

]

, with p(Dk|x
tj

k , Is
k) given in (17), and

is obtained as follows

p
tj

k =

∫

p(x
tj

k |I
tj

k−1
(D1:k−1))

′
[

1 − p(Dk|x
tj

k , Is
k)

]

dx
tj

k (19)

Assuming no false detection from the sensors, the proba-

bility that the target tj has been detected in k steps, denoted

P
tj

k , is obtained from the cumulative sum of the p
tj

k ’s as in

P
tj

k =

k
∑

m=1

p
tj
m = P

tj

k−1
+ p

tj

k (20)

For this reason P
tj

k will be referred to as the ‘cumulative’

probability of detection to distinguish it from the payoff

probability of detection function p
tj

k .

A. Multi-Target Team Utility

The probability of detecting target j, given a series of

observations generated by the control sequence over the

planning horizon starting at time step k, is given by the en-

gendered net variation in cumulative probability of detection

∆P
tj

k =

k+Nk
∑

l=k+1

p
tj

l = P
tj

k+Nk
− P

tj

k (21)

with p
tj

l obtained from (19). Notice that ∆P
tj

k can also

be directly obtained from the corresponding reduction in

volume under the pseudo-density function caused by the

observations. This measure was used in [6] as the team utility

function for the single target search problem. For the multi-

target search problem, this paper uses the following weighted

sum of the above measure

Jk(u, Nk) =

Nt
∑

j=1

w
si

k ∆P
tj

k , with

Nt
∑

j=1

w
si

k = 1 (22)

where the weights wsi

k ’s correspond to the relative priority

for each target at time step k.

B. Individual Utility

Hence the individual greedy version of the team utility in

(22) is given by

J
si

k (usi , Nk) =

Nt
∑

j=1

w
si

k

k+Nk
∑

l=k+1

∫

p(x
tj

l |D
i

1:l−1)
′
[1−p(D

i

l|x
tj

l )] dx
tj

l

(23)

which for a time-horizon of Nk = 1, reduces to the

weighted sum of each target probability of detection, as in

Jsi

k (usi , 1) =
∑Nt

j=1
wsi

k p
tj

k , with p
tj

k given in (19). It is

Equation (23) that is used as a utility in the individual opti-

mization problems for the negotiation algorithm presented

in Sec. III-D where piecewise constant control solutions

[12] are obtained for the by using a constrained non-

linear programming technique called Sequential Quadratic

Programming (SQP) [16].

V. EXPERIMENT

This section presents the implementation details and the results
of the decentralized cooperative search framework implemented for
a team of 5 human-computer augmented nodes and 4 autonomous
mobile robots, searching for multiple stationary targets on Cornell
University baseball field (see Fig. 4). For this paper, the necessary
decentralized network components, i.e. controller/negotiator, sensor
fusion node, and graphical interface, were a mix of Matlab imple-
mentations and C++ components developed at Cornell as part of
multi-robot research facility that are compatible with the ORCA
open-source robotics components repository [13].

Fig. 4. Search Area : Cornell Campus.

A. Hardware

1) Rovers: The Segway Robotics Mobility Platform 50 (RMP-
50) displayed in Fig. 5 is a sturdy, large payload capacity, long
endurance and relatively low cost platform. Its large wheel radius
makes it ideal for carrying sensors and testing algorithms in indoor
as well as outdoor environments.

Fig. 5. Segway RMP-50 equipped with embeded computer, SICK laser range finder,

GPS receiver, magnetometer, gimballed pyrometer and wireless communication.
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2) Computers: Each human searcher is equipped with a small
portable Sony Micro-PCs as the shown in Fig. 6a, meet these
requirements very well. Despite its ultra portable design, this micro-
computer, with a 1.2 GHz processor running a full version of
Windows XP, is capable of handling all the required processing
tasks. Its wireless capabilities are similar to those of standard laptop.
It also has other nice feature for distributed collaborative work such
as imbeded webcams aimed at both the user and the environement
away from the user.

(a) Portable Computer (b) Embeded Computer

Fig. 6. Computers: (a) The Sony Vaio VGN-UX280P Micro-PC features a 4.5 inch

LCD touch screen, a hidden keyboard, a 1.2 GHz Ultra Low Voltage Intel processor, a

30 GB hard drive, 512 MB of RAM, a built-in webcam, a Memory Stick slot, Tri-mode

Wi-Fi (802.11a/b/g), a USB 2.0 comm port and Bluetooth connectivity. (b) Small form

factor Morex casing containing Mini-ITX board by Jetway with 2.0 Ghz VIA CPU,

1 GB of RAM, with 4 RS-232 serial and 6 USB connectors, power supply, 200 GB

hard drive and wireless ethernet card (seen here mounted in custom modular support,

For the mobile robotic platform onboard computer, a Mini-ITX
board with an integrated 2.0 Ghz processor and 1 GB of RAM
was integrated into a small form factor case (Fig. 6b) with a
regulated power supply unit, a 200GB hard-drive and a wireless
communication card. The system can be connected to both the 12V
DC from the robot’s supply or 120V AC from a wall outlet making
the perfect “plug-and-play” computing solution for the rovers and
sensors.

3) Localization Sensors: Both the humans and robots are
equipped with a small WAAS-enabled GPS receiver coupled with
a 2D magnetometer to improve the position estimate estimate
accuracy, especially in orientation. Both sensors communicate and
receive power via a USB connection. This eliminates the need
for extra battery supply. Fig. 7a shows the receiver with its USB
connector. For the humans, as shown on Figs. 7b and 7c, the two
sensors were mounted on helmets to obtain reliable measurements
and good tracking of the head motion.

(a) (b) (c)

Fig. 7. Localization Sensors: (a) The GlobalSat BU-353 is a WAAS and EGNOS

enabled GPS receiver incorporating the latest SiRF Star III GPS chipset and an active

patch antenna for high degree of localization accuracy with waterproof casing and

USB connector for interfacing with a portable computer; (b) SparkFun Electronics

small 2-axis compass board with Honeywell HMC6352 compass chip mounted on top

inside of the helmet; and (c) side view of human localization sensor helmet with GPS

receiver mounted on the back.

4) Targets and Artificial Detection Sensors: In order for
both the humans and robots to detect the same target, an upward-
facing infrared light emitting diode (Fig. 8a), powered by a watch
battery, was attached to a small object approximately the size of a
golf ball. The infrared emitter is a GaAIAs infrared LED mounted
in a plastic leadless PLCC-2 SMD package with a flat lens window
that allows a half-power beam emission angle of 110 degrees.

The object on which the LED was attached is easy to see with the
human eye at close range (approximately 0.7 meters), but visibility
of the target drops off as it is obstructed by tall grass or shadow.

Each robot was equipped with three sensors (Fig. 8b) to detect
the LED target(s). The NPN silicon phototransistors are mounted
in miniature SMD packages. The devices have a flat window lens,
which has a 50 percent acceptance angle of 100 degrees. The
phototransistors are mechanically and spectrally matched to the
infrared LEDs.

(a) (b)

Fig. 8. Target and detection sensor: (a) The OP280 is a GaAIAs infrared LED

mounted in a plastic leadless PLCC-2 SMD package with a flat lens window that

allows a wide beam angle. The PLCC-2 packaging is suitable for single device or

array applications. The OP280 Series LEDs is mechanically and spectrally matched

to OP580 series phototransistors; (b)The OP580 is an NPN silicon phototransistor

mounted in a miniature SMD package. The device has a flat window lens, which

enables a wide acceptance angle. It is packaged in a plastic leadless chip carrier that

is compatible with most automated mounting equipment. The OP580 is mechanically

and spectrally matched to the OP280.

B. Sensor Models

As mentioned earlier the target is easy to see with the human
eye at close range (approximately 0.7 meters), but visibility of the
target drops off as it is obstructed by tall grass or shadow. Fig.
9a shows the likelihood of target detection using the human vision
model. This model was developed using actual measurements and
instances of detection and no detection for several human subjects.

The model assumes a forward-facing human, where maximum
target visibility is straight ahead at just under one meter from the
human. As seen in Fig. 9a, detection drops off and is approximately
zero when the target is located further than three meters from the
human sensor, mostly due to tall grass, shadows, or other visual
obstructions. Assuming a forward-facing human, target detection is
highest straight-ahead, and drops as far peripheral vision makes it
difficult for the human to see possible targets.

(a) (b)

Fig. 9. Detection Sensor Models: (a) Likelihood of Detection for Human Vision

Model. The vertical axis (y) is along the human’s center of gaze. The horizontal axis

(x) is at the edge of the human’s peripheral vision, where there is no target visibility.

Red contour lines indicate high likelihood of detection. All units are in meters. (b)

Likelihood of Detection for Robot Vision Model.

The robot vision using three phototransistors is modeled as a
single bearing-only sensor with a viewing angle up to 270 degrees
and range up to 1.5 meters. The likelihood of target detection using
the robot vision model is shown in Fig. 9b, where red indicates high
likelihood of detection and blue is low likelihood of detection.

C. Results

Fig. 10 illustrates the decentralized search results for the active
Bayesian sensor network algorithm presented in Sec. II. The ad-
vantage of a cooperative solution over the typical parallel search
patterns usually implemented during search and rescue operations
on foot or the coordinated search solution presented in [6] is made
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clear on Fig. 10d. For the cooperative solution (Figs. 10a-c), a
rolling time horizon of 30 steps, constituted of 3 control parameters,
each maintained for 10 steps, is renegotiated every 10 steps. In
the coordinated solution, each searcher follows a greedy 1-step
lookahead solution. By allowing a more efficient allocation of the
search effort, the cooperative approach compares advantageously
to both coordinated (Fig. 10e) and the parallel track formation
(Fig. 10f) search strategies. In fact after 160 steps, the time needed
for the formation to traverse the search area, the cooperating
vehicles reach a final Pk of P

coop
160 = .818 vs. P coord

160 = .718
for the coordinated solution and P

parallel
160 = .575 for the flight

formation, which correspond to an increase of a 13.9% and 42.3%
respectively over the later solutions (Fig. 10d).

(a) (b)
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Fig. 10. Cooperative search for a static target with 10 human-computer
augmented nodes: (a) to (c) 3D views of the target PDF and the cooperative
trajectories at time steps k = 1, 90 and 180, respectively (i.e. .667, 60 and
120 minutes); (d) comparison of the cumulative probability of detection, Pk

vs. k, for the cooperative, coordinated and the straight pattern search; (e)
coordinated search at k = 180 (120 mins.), and (f) straight pattern flight
formation search at k = 160 (106.67 mins).

VI. CONCLUSION

In this paper, scalable collaborative human-robot systems for
information gathering applications are approached as active sensor
networks. Peer-to-peer collaboration between human-computer aug-
mented nodes and autonomous mobile sensor platforms happens by
sharing information via wireless communication network. For each
node, a computer (onboard the platform or carried by the human)
implements both a decentralized Bayesian fusion algorithm and a
decentralized Bayesian control negotiation algorithm.

The decentralized Bayesian control techniques demonstrated in
this paper are a natural extension of the general decentralized
Bayesian data fusion algorithm. The individual controllers iter-
atively negotiate anonymously in the information space to find
cooperative search plans based on both observed and predicted
information that explicitly consider the human motion model, its
sensors detection functions, as well as the target arbitrary motion
model. Applying the current technique for teaming human nodes
with multiple autonomous robotic platforms into a large hetero-
geneous network in various application domains, i.e. exploration,

mapping, environmental monitoring, surveillance, and others, is part
of the ongoing research effort. The practical outcomes of these
decentralized algorithms will be to increase situation awareness,
redundancy, reliability and responsiveness useful for time critical
missions such as in crisis situations where human life may be at
stake.
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