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Abstract

A framework using Bayesian Networks (BNs) to model interactions between humans and multiple semi-
autonomous vehicles is introduced. Discrete operator decisions are modeled as probabilistic BN blocks with
conditional dependencies on individual system states. Human decision data was collected on the RoboFlag
simulation testbed, which served as an experimental platform to observe human control of simulated semi-
autonomous teams of robot vehicles. The data is used to generate non-parametric decision models through
a method based on Parzen density estimation. The identified probabilistic graph can be used in estimation
form (update distributions based on new data) or prediction form (predict the probability of a decision based
on new data). Actual decision modeling results are shown using data from the RoboFlag experiments.

I. Introduction

This paper develops an innovative Bayesian approach for human interactions with semi-autonomous
robotic systems performing missions in unstructured and dynamic environments. Interfacing human opera-
tors with multiple autonomous robots engaged in tasks such as search and identify, search and rescue, and
cooperative monitoring is a challenging problem. It is critical to the success of such missions to develop an
integrated operator-multiple robot system that is robust and efficient in the presence of evolving uncertain
environmental parameters.

The aim of this work is to develop a modeling methodology that encapsulates both autonomous, or semi-
autonomous platforms and operator decisions in a unifying probabilistic framework. This framework will be
useful for analyzing how operators control/task/make decisions with multiple robots. Specifically it will lead
to the automatic identification of operator decisions from data (average, confidence, dependencies), and the
evaluation of user interfaces, situation awareness, fatigue, or other factors. Such a modeling approach could
also be used for predicting operator decisions and evaluate and design important concepts such interactive
decision aids and adaptive autonomy levels.

A seminal reference on decision modeling which summarizes the results of operator-machine systems
research in the Cognitive Sciences community is given by Sheridan.! Examples include quickness of physical
reaction, levels of short term memory, and effectiveness of different user interfaces. This work has led to
integrated databases for modeling/prediction of perception and motor skills> ® and provides valuable insight
into how users make decisions as a function of parameters such as stress, interface type, and time. In
these studies however, many of the environmental parameters are typically constrained in order to reduce
the complexity of the system and adequately study a single parameter. Similarly, research in the field of
human-robot interaction in multi-robot systems is often limited to only a few humans and a small number of
robots. Increased levels of autonomy are required by the robotic platform to improve the scalability of such
systems since the communication bandwidth and the ability for the human operator to provide simultaneous
assistance to several robots are limited.

Advances in statistical estimation theory and computer power have allowed for more sophisticated mod-
eling techniques where the simplifying constraints are relaxed; operator decision modeling which use Markov
Decision Processes (MDP’s)% is a good example. The long term objectives of the approach proposed here
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are twofold. Firstly, decisions and environmental variables are identified from data and used to develop a
probabilistic model. The model can then be used for prediction, even in the presence of uncertainties in the
environment and across multiple users. Secondly, the causes of decreased performance or mission failures in
human-robotic systems will be studied at a later time. As systems become more complex, adding automation
to reduce the occurrence of failures or increase overall performance becomes more desirable. However, de-
spite system complexity, human operators are often hesitant to give too much control over to automation.”
This paper focuses on the first objective of obtaining probabilistic decision models from data, while the
development and verification of metrics and estimation methods of human-robotic systems performance to
complement these models will be the subject of further work.

Details about an operator decision modeling methodology using a Bayesian Network graph framework,
softmax and discrete random variables were provided in Refs. 8,9. Such a network enabled a formal proba-
bilistic model of human decisions to be realized. This paper extends this theory in two important ways with:
i) Non-parametric density modeling using Parzen kernels (also see Ref. 10), and ii) Pre-processing decision
data into initial strategies using prioritized conditional dependencies (also see Ref. 11).

Experimental human decision data was collected at the Air Force Research Laboratory (AFRL) using
Cornell’s RoboFlag testbed!'? 13 to explore basic operator-vehicle interactions in the context of an adversarial
game of “search-and-identify.” Some of the human decision models obtained from applying this theoretical
framework are presented.

This paper is structured as follows. First, Section II describes the proposed model for coupled operator-
multiple robot systems based on probabilistic graphs, also known as Bayesian Networks (BNs). This includes
a brief overview of BN theory and how they can be used to probabilistically model operator decisions.
Section III introduces some background and motivation for model reduction, as well as a proposed method
to be used towards developing a Bayesian Network model. Section IV describes the RoboFlag game simulator
and the experimental setup. Section V presents some of the experimental data and corresponding decision
modeling results. Finally, conclusions and ongoing research directions are outlined in Section VI.

II. Probabilistic Models for Coupled Operator-Multiple Robot Systems

In this paper, BN models!* !> are used to model human decisions, task allocation, interactions, and

sensory inputs. These models capture in a formal unified probabilistic framework the important elements of
the problem, such as: decisions’ probabilistic dependencies on state parameters,® variations across human
operators and environmental conditions, vehicles dynamics (e.g. using an Extended Kalman Filter for vehicle
navigation estimation or an Information Filter for tracking) and opponents’ intentions. These models scale
well, as only dependent states are used to define the coupled probabilities, thus making the framework ideal
to model collaborative human-robot systems® in adversarial situations. It is also an ideal framework for
modeling human-human collaboration as well as hierarchical decision systems.

A BN model itself is represented by a directed graph, with each arrow indicating conditional probabilistic
dependency. By maintaining probabilistic connections between nodes, the model can be used for formal
probabilistic analysis, such as estimation and prediction. To illustrate the ability of BN models to capture
joint human-robot dynamics, Fig. 1 shows a model of a single Unmanned Air Vehicle (UAV) tracking ground
targets with a camera. This model can be decomposed into three distinct parts: a vehicle pose model,
a target tracking model, and an operator decision model. The vehicle/UAV model includes the mode of
operation (U), position/attitude state (Xyqv), and sensor measurements (Y4, ). Estimation of the vehicle
state can be accomplished using the well known Kalman Filter,'® which can be written in terms of the
graph as P(Xyuav|U, Yuav) (probability of the UAV state, given the mode of operation and measurements).
The Target Tracking model includes the target type (V'), position state (X4, ), and camera measurement
(Yeam ), which depends on the location of the target and location/attitude of the UAV. Joint estimation of
the target type and state is a classic target tracking problem, which can be solved with a multiple model
Kalman Filter,'% P(X;4r, V| Xuav, Yeam)-

In this example, the operator decisions (D) are the discrete tasking and re-tasking of the UAV planner
(mode of operation (U)) to orbit a target, travel to new target, or loiter until the next time step. The
conditional probability P(D|Xyav, V, Xtar, U) naturally captures the probability of a certain decision given
the UAV mode and its location, and the target type and its location. The focus of this paper is on the
operator decision model and coupling with the other two models. Note that the model shown in Fig. 1 is a
BN with no time dependence; a Dynamic Belief Network (DBN) model can be developed by repeating the
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BN model over a series of time slices, with an appropriate time based model.'®
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Figure 1. Probabilistic graph model of a single operator tasking a single UAV to track (and estimate states)
of a target. Circles denote continuous vector valued random variables, squares discrete random variables, and
shaded blocks indicate that direct measurements are available.

A. BN Representation for Probabilistic Decision Modeling

Operator decisions are modeled using a BN defining conditional probabilistic dependencies on environmental
variables. Formally, the conditional probability density function (PDF) of the operator’s decisions D based
the vector of “parent” variables X, is is given by P(D|X). This function is also called the likelihood
function because it denotes how likely a given decision instance is as a function of the parent variables.
The work here assumes that the operator decisions are discrete, while the parent variables can either be
discrete or continuous. Technically, for discrete decisions, P(D|X) should be referred to as a Probability
Mass Distribution (PMD). In this paper, we will keep referring to it as a PDF since, in general, the decisions
may either be discrete or continuous. Figure 2(a) illustrates the corresponding BN. Also, as discussed in
SectionV-A and illustrated in Fig. 7(a), it is possible to simplify the learning process of the decision block for
a complex multi-vehicle system by subdividing the block into multiple hierarchical levels of decision making,
i.e. coordination, strategic, tactical and low-level vehicle control, leading to the following notation:

P(DlX) = P(Ucoord; Ust?“at; Utact7 Uveth)- (1)

Since decisions at one level often depend only on the state of the world X and the decision made at the level
above, Equation 1 generally simplifies nicely as follows by applying the probability chain rule

P(Ucoorda Ustrat; Utact; Uveh|X) = P(Ucoord|X) : P(Ustrat|Ucoord; X) . P(Utact|Ustrat; X) : P(Uveh|Utact; X)
(2)

B. Non-parametric Probabilistic Decision Models Using Parzen Density Estimation

Consider the case of np discrete decision classes in D, and a set of system state variables X. The operator
decision likelihoods A;(X) = P(D =i|X), Vi € [1,...,np] may simply be obtained from the following Bayes’
rule
, P(X|D=1i)-P(D=1i P(X|D=1)-P(D=1i
p(p=ijx)= PER=D PO =0 PP =0 PO )
P(X) S5 P(XID =) P(D = J)

where the decision class priors, P(D = i), Vi, may be estimated from the training data using frequency
counts, while the class-conditional PDFs for the state-variables, P(X|D = i), Vi, can be estimated via
parametric, semi-parametric, or non-parametric methods. If P(X|D) may not easily be represented by any
known parametric PDF, then semi-parametric, or nonparametric density estimation techniques are used.!”
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Parzen kernel methods are widely used for non-parametric density estimation in statistical classification
because the estimates are easy to train and can offer robust performance without requiring any assumptions
about the underlying class-conditional densities.!® For a given decision class i with training set z* with Np
points, the Parzen density estimate is given by a sum of n; kernel PDFs centered about each sample point,
or P(X|D=1i)= Z;”:l f(X,x}). Gaussian kernels are common and lead to the following sum of Gaussians
mixture model (for a g-dimensional state-space):

3 . 1 S 1 iNT pp—1 i
P(X=x|D=l)=W;exp{—§(x—xp) H (x—xp)}, H =13, (4)
where h is the window, or bandwidth parameter which scales the kernel covariance 3 and acts as a smoothing
parameter for the estimated density. The kernel covariance ¥ usually is either assumed to be diagonal, e.g.
identity, or may be the unbiased estimate of the class-conditional covariance computed from the data. It
may also be computed adaptively based on the local data. The parameter h may also be fixed or selected
adaptively based on popular criteria, such as: likelihood maximization for the individual class-conditional
densities, and minimization of the estimated probability of misclassification.!®>2° Although not used in this
paper, the cost of computation and storage of all training data for Parzen can be reduced significantly via
data condensation techniques.?!»22

The nonparametric approach leads to the simple BN representation shown in Fig. 2(a). Since Parzen
density estimates asymptotically approximate any probability density function, they are ideal for generating
multi-modal and/or non-linearly correlated decision surfaces. As an example, Fig. 2(c) shows the bi-modal
Parzen density estimates P(X|D = i) obtained for the corresponding np = 3 classified training data sets z°
shown in Fig. 2(b). Likelihood maximization is used to select the kernel window parameter h for each class.

Raw Data Class-Conditional Densities, P(X,Y|Class)

O Decision 1

O Decision 1 % Decision 2
x  Decision 2 +  Decision 3
+  Decision 3

Y Feature
[

D | .
= 0 1 2 3 4 5 Y Feature ) -1
X Feature

(a) BN (b) z* (c) P(X|D = 1)
Figure 2. Parzen regression for np=3 classified decision data sets: (a) Simple Bayesian Network (BN) model
showing conditional probabilistic dependency of the decisions D on the parent state variables X only; (b)
2D sample training sets, {z!,22,2%}; and (c) Parzen conditional probability density estimates P(X|D = i) for
decisions i=1,2 and 3.

X Feature

It is interesting to notice that deterministic decisions, d(X), function of the state, may be obtained
directly from the Parzen PDF estimates P(X|D = i)’s by applying the following rule

d(X) :argm?XP(X|D:i)~P(D:i). (5)

However, probabilistic decisions may be generated from the likelihood functions A;(X) = P(D = i|X)
obtained by applying Equation 3 to the Parzen estimates. Both equations here assume that the cost of
making a wrong decision is uniform across the state X. They may also easily be modified to include a non-
uniform cost or risk function parameter which would skew the distributions and slightly move the decision
boundaries. Figures 3(a) to 3(c) show the post-processed likelihood functions for decisions i=1,2 and 3,
respectively, for the sample data and PDF estimates of Figs. 2(b) and 2(c). Notice that the likelihood
gradients are fairly steep which indicative mostly separable decision data and correspondingly sharp decision
boundaries.
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Figure 3. Parzen regression for np=3 classified decision data sets: (a)—(c) Non-parametric decision likelihoods

Ai(X) = P(D = i|X) for decisions i=1, 2 and 3, respectively, obtained for the 2D training data sets shown in
Fig. 2.

X Feature

ITI. Model Reduction

A. Background and Motivation

Collaborative human-robot systems evolving in complex environments generate very large numbers of parent
variables. Typically, the associated level of complexity forbid the generation of BNs. Practical BNs require
that some form dimension or variable ranking and reduction is performed before it can be learnt. Figure 4
shows three possible ways this can be achieved. The reduction method used here assumes pre-clustered data,
as shown by the shaded areas in Fig. 4.

RAW HRI
DATA

X PAR lx PAR

Xoprs Y CLUSTERING REDUCTION

REDUCTION Xoprs Y l Xrep

REDUCTION CLUSTERING ‘

X,

RED?

Y

BAYESIAN
NETWORK

Figure 4. Three scenarios for data reduction prior to learning a Bayesian Network: (leftmost path) raw data
comes already classified; (middle path) data must be classified (manually, or by using a common algorithm such
K-means to find natural clusters in the high-dimensional space) prior to reduction; and (rightmost path) the
number of parent variables is reduced prior to clustering and then uses Xrprpp to cluster into separate events.

Developing a low dimensional representation of data embedded in high dimensional space is a key prob-
lem in many fields. Several reduction techniques have been developed for applications ranging from semi-
supervised learning and pattern recognition to separating overlapping noisy signals.?®2* While many of
these approaches are statistically sound and commonly used, they do not necessarily allow for a proba-
bilistic graph model to take advantage of the resulting lower-dimensional space. Additionally, the reduced
dimensions often have little to no physical meaning and may not provide intuitive insight to the problem.

Common reduction methods include for example, Principal Components Analysis (PCA) which linearly
transforms the data onto new orthogonal coordinates such that redundancy and noise can be reduced out,?
but it is not optimized for class separability and is sensitive to scaling issues.?® Laplacian Eigenmaps and
Diffusion Maps are able to obtain a lower-dimensional embedding of the data onto a nonlinear manifold?3-24 26
and retain natural clusters of the data, but they are also sensitive to scaling and can not be efficiently
implemented with sparse data. Here, a variance-ratio reduction method is used to simplify the data used in
the Bayesian Network.
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B. Variance-Ratio Reduction Method

The aim of the method first introduced in Ref. 11 is to significantly reduce the data dimensionality in order

to simplify learning the Bayesian Network by considering only the most influential parent variables for each

nodes or events. Here, the ‘most influential variables’ for a particular event are considered to be those that

exhibit highest dependencies from that event compared to other events and maintain natural clusters in the

data.

For a given set of data separated into pre-clustered decision modes, the variance ratio is defined as
Ri;=-2% " Vie[l,..np),je€ll,...nx] (6)
Oall,j

where np and nx are the numbers of operator decision modes and parent variables, respectively, oq,;
represents the variance of all user decisions over the jth variable, and o; ; represents the variance of the ith
decision mode over the jth variable.

The ratio R; ; gives an intuitive metric as to how ‘dependent’ the modes are to the parent variables; if
R; ; is small, the dependency of the ith mode on the jth variable is high compared to that of other modes on
the same variable; if R; ; is large, the jth variable does not distinguish well the ith mode from the rest of the
data. Parent variables associated with lowest values of R; ; can then be kept for use in a Bayesian Network,
while those associated with higher values over all modes are ignored. The result is a reduced system model in
lower-dimensional space which preserves probabilistic clusters in the data. The advantages to this reduction
method over other commonly-used methods are:'!

e while a large amount of data will improve the accuracy of the algorithm, it can be implemented using
sparse data;

e the technique does not transform the original parent variables such that the data lose their physical
meaning and intuitive patterns;

o the data does not need to be pre-scaled, i.e. R;; is unitless and is unaffected by scaling; and

e the reduced system model contains parent variables that can be easily used in a probabilistic graph
framework.

Figure 5 illustrates the usefulness of the variance-ratio reduction method on a sample problem. Data from
two events (defined as Category 1 and 2) are recorded in three-dimensional space as plotted in Fig. 5(a).
For each event and parent variable combination, the variance ratio R; ; was calculated and represented by a
bar shown in Fig. 5(b) where it is easily observed that Category 1 data has the highest relative dependency
on Parent Variable 2, and Category 2 data has the highest relative dependency on Parent Variable 1. Con-
sequently, the third parent variable, since it does not contribute much additional differentiation information,
can be eliminated and a Bayesian Network model can be created based on a reduced two-dimensional space.
One can observe in Fig. 5(c) that enough data is retained by these two parent variables such that the events
are probabilistically distinguishable. This method not only eliminates the need for normalization, but it also
reduces out the variables that do not help distinguishing between different categories.
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Figure 5. Data reduction example: (a) Sample data set with three parent variables; (b) Values of R; ; for each
category i and parent variable j; and (c) Reduced sample data set with two parent variables.
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IV. RoboFlag Experiment

A. Background

The Cornell RoboFlag simulation and experimental testbed'? 2728 is used to experimentally explore the
development and evaluation of realistic solutions for semi-autonomous control of coupled operator-multiple
vehicles systems. Many key aspects of future systems can be set up and studied with this testbed, such
as: inclusion of a single or multiple human operators, different levels of tasking and autonomy, cooperative
planning, and uncertainties associated with incomplete information, latency, and an intelligent adversary.

B. Description

A set of RoboFlag games was conceived to study operator decision making within a search-and-identify type
of mission. Operators controlled three Blue vehicles: two fast moving search vehicles (SV'1, SV2), each with
the ability to locate entities (reducing location uncertainty); and one slow moving identification or ID vehicle
(IDV), with the ability to both locate entities and identify their type (increase ID probability). During the
mission, three Red entities could be encountered: two stationary (flag or robot) targets (ITRGT'1, TRGT?2)
with the ability to tag any Blue vehicles that come in contact with it; and a Chaser vehicle (C HSR) designed
to chase and tag any Blue vehicle within it’s sensor field of view. Upon getting tagged, a Blue team vehicle
must automatically return all the way to home base at a very slow pace before being able to resume playing.

When a target is first detected, its location is highly uncertain and is contained inside a large probability
circle. The uncertainty radius decreases as more localization measurements are collected by maintaining the
target within the sensor field-of-view (as depicted in Fig. 6) of one or more Blue team vehicles. The rate
of decrease is approximately exponential and mimics traditional estimation/tracking software. Search and
ID vehicles can cooperate and fuse sensory information in order to improve information collection. The ID
probability is given by a bar on the right side of the GUI. Only the ID vehicle can collect identity information
and move the probability from its initial, a priori value. The ID probability improves more rapidly if the
location uncertainty is small. When users are confident of the final target type, the user chooses (flag or
robot) formally using a GUI input, as shown in Fig. 6. Once both targets have been localized and identified
by the user, the user may then terminate the game by pressing the “Finish” button and the final time gets
recorded.

Human in the Loop (HITL)

—Search play

—User ID input

ID Probability
Bars

Location Uncertainty Circles
Figure 6. RoboFlag GUI for the first set of games implemented at AFRL/HECP.

C. Experiment

Experiments were conducted at the Air Force Research Laboratory (AFRL). Sixteen subjects were selected
from the AFRL subject pool. Each subject was initially trained, and then completed a 4x4 matrix of 16
trials, where two parameters were varied:

1. Location of targets within field
2. Target combination (i.e., 2 robots/0 flag, 1 robot/1 flag, and 0 robot/2 flags)
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Data recorded included all robot telemetry, users clicks (saved as “events”), and digital videos of the game
display and subject for each trial. Each event was assumed to be a new decision or the continuation of a
current decision by the user. Four additional trials were added after the original 16, where users were asked
to “describe” their decisions, actions, and strategies during the games. These four trials had the same initial
conditions as for the first four trials.

In this first set of Roboflag experiments, users controlled the robots by first selecting a vehicle, i.e. left-
clicking on it, followed by a single way point allocation, i.e. right-clicking at the desired destination®. As
soon as the way point is attributed, the robot immediately proceeds towards it until it reaches destination, at
which point it switches into a loitering mode. It is possible for the user to re-allocate a different destination
to the same robot multiple times while it is selected. It is the responsibility of the user to avoid collision
with the enemy entities and evade the Chaser. There is no form of automation, apart from the automatic
“Go Home” move when a vehicle does get tagged, and the “Loiter” mode when a vehicle has reached its
destination before being re-tasked. A typical cooperative behavior elicited by the users would involve sending
two search vehicles to a single target (with the effect of reducing the uncertainty faster), or by reducing the
uncertainty before or while the ID vehicle was near the target. Another behavior which proved very useful
to avoid the ID vehicle getting tagged was to use one the search vehicles to seek out the enemy Chaser and
decoy it away so the slower ID vehicle could then safely be sent in to identify a target.

V. Experimental Results

A. Coupled Operator-Vehicle Decision Modeling

For the search-and-identify RoboFlag scenario described in the previous section, the state of the world may
be represented by the following primary state vector

X = [Xsvi, Xsve, Xipv, Xrrar1, XTRGT2, XCHSR] (7)

which is composed of the partial state vectors for the two search vehicles, Xgy1 and Xgyo, the ID vehicle,
Xipv, the two targets, Xrrar1 and Xrrare, and the Chaser, Xcpsr. These partial state vectors are in
turn decomposed as in the following:

Xsv1 = |[x,y,selected, tagged, mode]

Xsva = |[x,vy,selected, tagged, mode]

Xipv = [z,y, selected, tagged, mode]
Xrrar1 = [z,y,detected, uncLoc, 1D, uncl D]
Xrrare = [z,y,detected, uncLoc, 1D, uncl D]

Xcnsr = |x,y,detected, uncLoc]

where x and y are continuous coordinate variables; selected and tagged are boolean indicating whether the
vehicle is currently “tagged” or “selected” by the user, respectively; mode is a discrete multi-modal variable
representing the vehicle strategic mode of behaviors; detected is a boolean to specify whether a red team
entity has been detected and is currently visible; uncLoc is its location uncertainty radius; I D is a target
entity type, i.e. flag or robot, and unclID is its ID probability. There are a total 31 primary variables
affecting the operator’s decisions, all of which were recorded in the telemetry data with the exception of the
hidden mode variables. However, the operator decisions were often made based on secondary variables made
of linear and non-linear combinations of these primary variables. For instance, the decision to evade the
Chaser is often made when the Chaser comes within a certain range from the vehicle, namely r2C HSRgeiven
in Table 2), irrespective of the actual x and y location of the vehicles within the enemy zone.

While a very large number of possible secondary variables exist, one may be able to use prior knowledge of
the system to determine the most probable subset of secondary variables. One can also use several linear or
non-linear reduction techniques to extract underlying embedding of data (briefly discussed in Sec. III). For
the Roboflag experiment, a total of 106 primary and secondary variables were considered, clearly illustrating
the need for model reduction. Using the variance-ratio reduction method, the 106-state vector has been

aNote: It was also possible to first select a ”search play” button and then provide a series of way points in a single allocation,
but that option was very seldom used.
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reduced to one which contains only 14 state variables, listed in Table 2, which are better correlated with
individual decision modes than with the entire data set.
Given the world state X, we assume four hierarchical levels of control/decision making, namely:

e a team coordination decision layer denoted by U,eord, representing the discrete coordination decisions
made by the operator when tasking his team of robots, e.g. tasking a search vehicle to decoy the
Chaser in order to allow the ID vehicle to identify a target;

e a strategic control layer Ust.q+ representing the vehicles’ strategic modes given Ugporqg and X;

e a tactical control layer Ui,.+ representing the vehicles’ control input given Ugnqr and X, e.g. each
vehicle’s waypoint allocation to fulfill its strategic assignment; and

e a low-level vehicle control layer U, representing the low-level actuation necessary for each vehicle
to fulfill its tactical control input, e.g. described as a deterministic function of the tactical waypoint
assignment.

Depending on a semi-autonomous system’s level of sophistication, the decisions made within each control
layer may either be made by a human operator, or relegated to the autonomy in either a fixed, or an adaptive
manner.

Figure 7(a) shows one time slice of the a general hierarchical DBN model for collaborative human-robot
systems. Figure 7(b) shows the actual expanded network specific for the Roboflag experiment. Rectangular
nodes indicate random variables with a discrete number of outputs, while circular nodes denote continuous
random variables. A rectangular node with double borders represents a deterministic function on a random
variable with an output probability defined as 1 given an input. Following the conventional Bayesian Network
notation, an arrow from parent nodes [ and m to child node n denotes the conditional probability P(n|l, m).
Hence, if two nodes are not directly connected in the DBN by an arrow, they are assumed to be conditionally
independent given each node’s parents. The top node represents the combined state vector at time step k,

X = [Xsvik Xsvoks Xipviks XTrGT1 ks XTRGT2,k> XCHSR, K]

while the nodes in the coordination, strategic, tactical and low-level control layers at time step k are denoted

_ SVl SV2
UCOOTd,k - [ coord, k> coord ks Ucoord k]
_ SVl SV2
UstTat,k - [ strat, k’ strat,k> Ustrat k]
_ SVl SV2 CHSR
Utact,k - [ tact,k> tact ks Utact ks U tact,k ]’ and
Uver,t = |Usvik, Usvak, Uik, Ucasr,k, Urrari e UrrRGT2,K)S
respectively.
From time slice k-1 ¢
From time slice k-1 ( X, )
v
PU 0 1 X) | Ui |
¥ v v v
SV 572 D CHSR
P(U“\"'”"k |U"‘“”'d’k’Xk) '>| Uatmrk | | U\vutA | | Ualrulk |<' I strat k
strat k
PU o 1U > X1 SV 72 D CHSR
’ '>| UmztA | | UIale | | Umak |‘- IUmuk I
P(Uveluk |Uma,k>Xk) 51 | SV2 1D TVGTI T'orz
Ui | Ui
_ — Lyl sv2 D CHSR TRGT1 TRGT2
To k1 PXii | Upi) = P(X g WU eris Xi) - To ket XM X xP X,M xm xm
(a) General Hierarchical BN (b) Roboflag DBN

Figure 7. Hierarchical DBN model at time step k: (a) General DBN of coupled operator-vehicles team; and
(b) detailed expanded DBN of the Roboflag experiement.

Inference from the DBN can be accomplished at each time slice k using marginal probabilities obtained
from the joint distribution of the network. In order to compute the joint distribution, we only need to
consider the conditional probabilities associated with each node. An interesting point which complicates the
human decision modeling from the first Roboflag experiment data is that the strategic control layer, Ugrqr,
is hidden in the operator’s mind and is therefore not directly observable. The strategic decision had to be
inferred by an external observer from the world state and the tactical move by the operator.
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B. Strategic Level Human Decisions

Table 1 describes the list of the strategic level decisions made by the human operators when tasking the

robots.

Table 1. Definition of the human operator strategic level decisions/actions when allocating tasks to vehicle.

Decisions:

Definitions:

StrategicPos (SP)

SaftyZone (SZ)
ID/Localiz (IDL)
SearchTarget (ST)
SearchChaser (SC)
Escort (ES)

Strategic positioning: Positioning of an asset so it is ready to use later, e.g. usually the
first moves before starting target search.

Move to Safety Zone.

Positioning to ID and/or Localize one of the Targets.
Searching for either or both Targets.

Searching for Chaser.

Escortint ID vehicle: Tasking a Search vehicle to either i) move along with the ID
vehicle on its way to a Target to protect it from the Chaser, or ii) guard a position
somewhere along the ID vehicle’s path in anticipation of decoying the Chaser. Note:
This move is different than “SearchChaser” and “Decoy” which are used to actively

find and decoy the Chaser.

Evade (EV) Evading, i.e. getting away from Chaser to prevent being tagged.

Decoy (D) Attracting the Chaser away from the ID Vehicle or keeping it distracted by intentionally
getting chased.

Avoid (A) Immediate reaction to Avoid collision with either a Target or Chaser upon detection or

when it suddenly enters enters the vehicle’s field-of-view.
SelectionError (SE)
clicks next to it resulting in a wrong destination (waypoint) assignment.

Other Other unlisted decisions.

Operator Selection Mistake: Usually when the operator tries to select an agent but

Notice that in this set of experiments, the operator’s strategic decisions defined in Table 1 are actually
hidden. Unless a subject specifically states what his intention was when tasking a robot, e.g. during the
video recording, there are no direct means of determining the true decision with certainty.

A solution to this problem, for application in which the strategic layer node description is not required,
is to hide the strategic level decisions into the coordination layer and refer to it by Ul;,..s = {Ucoords Ustrat }
as illustrated in Fig. 8a. A drawback from using this approach is that the new combined layer may become
more complicated and much more difficult to learn than the alternative two separate decision layers. It may

also be more difficult to interpret.

X
' PU X
U' P(U strat | X) ( coord | )
strat
U* P(Umct | U'Sfmt , X) P(Ustrar | Utact ’Ucoord b X)
= P(U,, | X)

(a) (b)
Figure 8. Roboflag coupled operator-vehicles team high-level BN for strategic level inference: (a) Strategic
layer hidden in the coordination layer, U’ = {Ucoord,Ustras}; (P) Arc reversal inference.

strat

Another alternative is to probabilistically infer the strategic decisions based on the parent nodes, i.e. the
current state of the world X at the time of the event and the coordination input U,,eq, and the child node,
i.e. the actual tactical control input Uy, following the a strategic decision, such as the waypoint assignment
when the mouse event was recorded. To do so, as illustrated in Fig. 8(b), the natural arrow direction from
child node Ui, to parent node Ugsrqr must be reversed by applying Bayes’ rule in reverse. This is often
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referred to as arc reversal.293!

The equivalent of an arc reversal operation was performed manually on the Roboflag data by replaying
each trial data and prompting a human observer to interpret the player’s decision at every recorded event.
This provided an initial data classification but also introduced new uncertainty associated with different
observers’ interpretations of the data , which may or may not accurately reflect the players’ true intentions.
Fortunately, the BN framework allows for the probabilistic model of the human decision-interpreter, obtained
from multiple users’ interpretations of the same decision data, to be integrated as an extra sensor node in
the network. However, the generation of such models is out of the scope of this paper.

Figure 9 illustrates the total number of times each of the actions described in Table 1 were used based
on the interpretation made by a single human observer. Unsurprisingly, the operators spent a significant
amount of time searching for targets and positioning their robots either strategically for later use, or for
IDing/Localizing the targets. Another play that consumed subjects’ attention was the combination of
Searching for and Decoying the Chaser in order to leave the path free for the slow ID vehicle to identify the
targets. This required a high level of attention and coordination on the part of the users as they had to keep
a search vehicle close enough to the Chaser to stay in its sensor field-of-view and entice it to give chase, but
far enough to avoid being tagged. In fact the total combined number of events recorded for these two plays
is much larger than any of the other events.

Occurance
0 2?0 490 6?0 8?0 1090 1%00 14‘00 1690 1800
Strategic i
Goto Sftyzn i
ID/Localiz b
SearchTarget B

SearchChaser

Escort

Evade

Decoy 4
Avoid b
SelectionError 4
I Target21
Other I Target22|]
I Both
I

Figure 9. Frequency of human strategic decisions defined in Table 1. Note that these were compiled by human
observers whose interpretations are subject to uncertainty.

Table 2 lists the three most ‘significant’ reduced state variables on which each of the strategic level op-
erator decisions defined in Table 1 are conditioned. The numbers in the table, for each decision considered,
indicate the rank of the top three significant variables and correspond to the increasing order of the lowest
three variance ratios R; ;’s (Equation 6) obtained from performing the data reduction. As with all model
identification procedures, the number of parent variables used for model fitting is a user/application depen-
dent choice. It is obtained here by selecting only those variables associated with the lowest three values of
R; ; for each decision.

For demonstration purposes, some strategic decision modeling results illustrating how the 16 human
subjects tasked their Search and ID vehicles are shown in the following three subsections. These decisions
are based on the state dependency matrix of Table 2. In subsection 1, a single parent variable is sufficient to
distinguish between two different strategic modes. On the other hand, subsections 2 and 3 show that more
than one variable are often required. For simplicity, it was assumed here that the operator was using a single
vehicle. The corresponding BN representation for these decisions is shown in Fig. 10.
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Table 2. Top three most significant state from the reduced state vector (vertical) for conditioning each operator
strategic level decision (horizontal) as defined in Table 1.

Reduced State Variables, X: Strategic Level Decisions, Ugrat:
SP SZ IDL ST SC ES EV D A SE
Elapsed game time [s] 3

YCHSR 3 2
uncLoccHsRr 1 1 1 3

uncLocrraT 3 1

uncIDTRGT1 2

IDV r2 closest TRGT 3
SelVeh r2 closest TRGT 2 2 2 1
SelVeh r2 furthest TRGT
SelVeh r2 CHSR 1 3 2 1 1 2
IDV’s WPr2 furthest TRGT 1
IDV’s WPr2 CHSR 1 3
uncLoc of TRGT closest 2 SelVeh 3 2 2

uncLoc of TRGT furthest 2 SelVeh 3

unclD of TRGT furthest 2 SelVeh 2

Abbreviation Keys:

CHSR  Chaser TRGT Target
IDV  ID Vehicle SelVeh  Selected Vehicle
uncLoc  Location uncertain radius | uncID ID probability
2 to r2 range/distance to
WP  Waypoint allocated WPr2 range from WP to

From time slice k-1

P(Uslrat,k | Xk)
P(Uract,k | errat,k > Xk )
P(Uveh,k | Utacf,k > Xk )

To k+1 P(Xk+1 |Uveh,k)=P(Xk+1 |U Xk)

Figure 10. Strategic decision node (shaded) in a hierarchical graph model for a single vehicle).

tact,k °

1. Case 1: Search vs. Decoy in 1D

Figure 11(a) shows decision data and Parzen class-conditional density estimates for Decoy and Search for
Target plotted against the selected vehicle’s Range to the Chaser. Figs. 11(b) and 11(c) show the corre-
sponding non-parametric decision probability likelihoods, P(Ustrqt = Search|X) and P(Ustrar = Decoy| X).
Several interesting facts are illustrated by these plots. Firstly, users very rarely chose to Search for Target if
the Chaser vehicle came too close. This decision was most often made at the beginning of the game, when
the Blue vehicles were furthest from the enemy zone, or in the middle of the game so long as the Chaser
was at a safe distance. In contrast, a Decoy move requires that the selected vehicle stay near enough to the
Chaser to keep it within sensor range, but far enough to avoid being tagged. This relative range of motion
is very limited, causing the variance of Decoy in the variable Range to Chaser very small compared to that
of Search for Target.
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Figure 11. Strategic decision data for Us¢rqt € {Search, Decoy} and reduced model in one dimension X ={SelVeh
range to CHSR (r2CHSRg.;ven)}: (a) decision data in 1D with Parzen conditional PDF estimates P(X |Ustrat = 1)
for i € {Search, Decoy}; (b) and (c) non-parametric decision likelihoods P(Us¢rat = i|X) for decisions ¢ = Search

and Decoy, respectively.

Notice that in this example the decision likelihoods are sharp even considering the low dimensional
representation. This indicates that the two decisions are easily distinguishable as they are well separated
from each other. However, other decision data may overlap with these two decision in this one-dimensional
space creating the need for additional dimensions. Case 3 illustrates this point with the inclusion of a third

decision data set.

2. Case 2: Fvade vs. Avoid in 2D

Figure 12(a) shows decision data for Evade and Avoid plotted against the Range to Closest Target and

the Range to Chaser for the selected vehicle.

Raw Data

= Il w
[ ) N o w o

Selected Vehicle Range to Closest Target
o
3

o

Avoid
Evade

0 0.5 1 15 2 25
Selected Vehicle Range to Chaser
(a) Data

Posterior Probability for

Probability
o o o o

oo

Selected Vehicle Range to Closest Target 0

(d) P(Ustrat = Evade|X)

Evade

Class—-Conditional Density

Class—Conditional Densities, f(X,Y|Class)

1

Selected Vehicle Range to Closest Target Y

Probability

(b) P(X|Ustrat = 1)
Avoid

Posterior Probability for

Selected Vehicle Range to Closest Target 0

(e) P(Ustrat = Avoid|X)

The Parzen class-conditional density estimates for these

Class—Conditional Densities, f(X,Y|Class)

Selected Vehicle Range to Closest Target

Selec

05 1 15 2 25
Selected Vehicle Range to Chaser

(c) P(X|Ustrat = 1)

Figure 12. Strategic decision data for Us¢rqt € {Evade, Avoid} and reduced model in dimensions X={SelVeh
range to CHSR (r2CHSRseiven), SelVeh range to closest TRGT (r2closestT’ RGTseivern)}: (a) scatter plot of de-
cision data on reduced dimensions; (b) Parzen conditional PDF estimates P(X|Ustrqt = 1) for ¢ € {Evade, Avoid};
(¢) top view of the Parzen PDF's showing the deterministic decision boundaries; (d) and (e) non-parametric
decision likelihoods P(Us¢rat = i|X) for decisions ¢ = Evade and Decoy, respectively.
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decisions are shown in in both Figs. 12(b) and 12(c). The resulting deterministic decision boundaries resulting
from these estimates (see Equation 5) can clearly be seen on Fig. 12(c). Figs 12(d) and 12(e) show the
corresponding decision likelihood surfaces (see Equation 3). For the Evade decision, users tried to flee
the Chaser vehicle when it came within their sensor range, regardless of their range to the nearest target.
Similarly, users chose to Avoid a target when it became suddenly visible along a vehicle’s path, regardless
of the vehicle’s range to Chaser.

In this example, considering two parent variables instead of a single one is necessary to better separate
the two decisions data. As shown in Fig. 12(a) the choice of Range to Closest Target and Range to Chaser
is ideal to separate this data as each decision seems to be align along one of the two dimensions. As a result,
Figs. 12(d) and 12(e) show sharp decision boundaries between the Evade and Avoid moves. Although in this
case two parent variables seem to be sufficient, considering a third variable may help to distinguish the part
of the data near the origin where there is significant overlap. i.e. where both the Rage to Closest Target
and the Range to Chaser are small.

3. Case 3: Search vs. Go to Safety Zone vs. Decoy in 2D

Figure 13(a) shows decision data for Decoy, Go to Safety Zone, and Search for Target plotted against the
Range to the Closest Target and the Range to the Chaser for the selected vehicle. The Parzen class-
conditional density estimates in Figs. 13(b) and 13(c) show the principal clusters for the three decisions,
while Figs. 13(d)-(f) show the corresponding decision probability surfaces.

Raw Data

Decoy nal Densiies, P(XY|Class)
Safety Zone Position|
Search for Target
e

Class-Conditional Densities, P(X,Y|Class)

»
o

Pl

o Decoy
* Safety Zone Position
+_Search for Target

o s

w

@

[

Selected Vehicle Range to Closest Target

o

Selected Vehicle Range to Closest Target
N
o kB N o w o s oo

-

15 2 25 3
Selected Vehicle Range to Chaser
(a) Data (b) P(X|Ustrat = %) (c) P(X|Ustrat = 1)

Posterior Probabily for Safety Zone Posiion Decoy

35 4 45

)

5 Selected Vehicle Range to Closest Target Selected Vehicle Range to Chaser

(d) P(Ustrat = Search|X) () P(Ustrat = SftyZn|X) (f) P(Ustrat = Decoy|X)

Figure 13. Strategic decision data for Us¢rqt € {Search, SafetyZone, Decoy} and reduced model in dimensions
X={SelVeh range to CHSR (r2CHSRg¢ivcrn), SelVeh range to closest TRGT (r2closestT RGTseiven)}: (a) scatter
plot of decision data on reduced dimensions; (b) Parzen conditional PDF estimates P(X|Ustrqt = ¢) for i €
{Search, S ftyZn, Decoy}; (c) top view of the Parzen PDF's showing the deterministic decision boundaries; (d)—
(f) non-parametric decision likelihoods P(Ustrat = i|X) for decisions i = Search, SftyZn and Decoy, respectively.

It is clear from these plots that vehicles are more likely to Decoy when they are close to the Chaser, which
agrees with intuition. It is also not surprising that vehicles are more likely to be sent back to the Safety
Zone once the distance to the closest target becomes small, since this indicates that either a target’s location
or ID was ascertained successfully by moving as close to it as possible. Since the Search for target data set
exhibits high variance in both the Target and Chaser Range dimensions, it overlaps significantly with the
data for the other two decisions, which makes probabilistic decision discrimination quite difficult. However,
it is still clear from Fig. 13 that when the distance to both Chaser and Target are large (i.e. when the Chaser
and Targets are not within vehicle sensing range), the user is very likely to task the vehicle to search for
targets. In this case a third parent state variable would improve separation among the three decisions and
therefore lead to sharper decision probabilities.
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C. Tactical Level Human Decisions

Tactical moves, i.e. waypoint assignments, vary greatly depending on the strategic intentions of the operator.
However, as depicted in Fig. 14, given a strategic task assignment Ugqr to a particular vehicle and given
the world state X, it is possible to obtain from the data a BN node to model the tactical decision layer Uyqet.
The shaded node on Fig. 14 represents the tactical moves for a single vehicle given the strategic decision of
searching for targets. Figure 15 shows an example of how to obtain the probabilistic model for this node
using non-parametric Parzen density estimation. P(UiaetUstrat, X)-

From time slice k-1

P(U, = Search| X, =(x,))

stratk Strategic Search ID/Locliz.| --- | Evade Decoy

U
P(U 01U, =Search, X, =(x,y))

strat k

U

tact k

PU, s U e X))

tactk >

P(Xk+l |Uveh,k) = P(XkH ‘Utacf,k = (pr’wpy)7Xk = (x?y))

Figure 14. Tactical Search decision node (shaded) in a hierarchical graph model for a single vehicle.

Figure 15(a) illustrates the entire set of tactical search data obtained for the first set of Roboflag exper-
iments, i.e. vehicle locations at time of the event (red stars), waypoint assignments (black dots), and corre-
sponding trajectories (black lines). As a modeling example, Figs. 15(b) to 15(d) show a series of three con-
tours of the PDF representing the tactical waypoint assignments, p(Uiact |Ustrat = Search, X = {xyen, Yven }),
given the vehicle is in search mode and given the state of the world, X = {@yeh, Yven} at three consecutive
locations, i.e. {-2,1}, {1.24,1.42} and {2.4,1.28} denoted by (blue stars). In this case, the reduced set of state
variables chosen e, and y,.p represent the vehicle’s location on the field. As can be seen from Fig. 15 the
choice of these variables makes sense for an illustrative example as they are intuitive to a human observer.
On the other hand, applying the model reduction technique could result in a better choice of variables for
both the reduced state of the world X and the waypoint destination Uy,.t, €.g. relative range and bearing.

In this example, the PDF p(Uiget|Ustrar = search, X = {Xyeh, Yven }), where the coordinates {xyen, Yven }
are represented by a blue star in Figs. 15(b) to 15(d), is obtained by performing a weighted sum of Gaussians
over each tactical data p

p(Utact = {mtact; ytact}|Ustrat = search, X = {xveha yveh}) =C- Z PYPNP({Ztactpaytactp}; 0)7 (8)
p=1

2 2
_(p—zyen) "+ Wp—Yyen)
202

where the weigths v, = 2; exp

— decrease exponentially with the range to the vehicle
2

(@tact —Ttacty) 2 +Wtact —Vtacty) >
location, o, determines the radius of influence, each Gaussian N, = ﬁ exp 202 is
centered around the corresponding assigned waypoint for a data point p, o is specifies the standard deviation,
and C'is a normalizing constant such that the integration of the probability density function sums to 1. Both
sigma and sigma., may be determined adaptively based on the local density of data.

Using the above technique, it is possible to compute on-line, from the stored data, the corresponding
tactical waypoint assignment PDF for any given state, given the strategic level decision. To reduce memory
usage and increase the speed of the online computations the large data set stored may be drastically reduced
using Girolami’s data condensation technique.?! It should be noticed that the PDFs may also be pre-
computed and tabulated on a discretized grid for quick reference. These PDFs may then be used in prediction
mode to generate decisions automatically using sampling techniques. In fact, this is illustrated in the sequence
from Figs. 15(b) to 15(d). The initial location for the vehicle in Fig. 15(b) was selected arbitrarily, but the
subsequent initial vehicle location (given state) in Fig. 15(c) was a random sample from the PDF represented
by the contours in Fig. 15(b). This is also true for the initial location in Fig. 15(d) which was sampled from
the PDF in Fig. 15(c). Work is underway to combine the decision models from each hierarchical layer to

15 of 18

American Institute of Aeronautics and Astronautics



:
i
|
=3 -2 -1 0 1 2 3
X

(a) Search Data (b) p(Utact|Ustrat = Search, X = {—2,1})
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(¢) p(Utact|Ustrat = Search, X = {1.24,1.42}) (d) p(Utact|Ustrat = Search, X = {2.4,1.28})

Figure 15. Search tactical data and modeling: example p(Uiact|Ustrat; X): (a) Vehicle location at the time of
the event data (red stars) and corresponding tactical waypoint assignments (black dots) given the strategic
decision of searching for targets; (b)—(d) Contours of the probabilistic tactical decision models p(Uiact|Ustrat, X)
obtained for a vehicle in search mode Usirqt = Search and located (blue star) at three consecutive places
X ={zyeh = =2, Yven = 1}, X = {zpen = 1.24, yper = 1.42} and X = {zyep, = 2.4, ypen = 1.28}, respectively.

create a complete probabilistic human operator emulator based on the Roboflag data collected. This model
combined with system performance metrics will then be used to to optimize the human-robots interactions
in coupled systems with adaptive autonomy.

VI. Conclusions and Ongoing Work

A modeling methodology for coupled operator-multiple vehicle systems is proposed using a unified frame-
work in a probabilistic graph setting. The framework uses conditional probabilistic dependencies between all
elements, leading to a Bayesian Network with probabilistic evaluation capability. Discrete operator decisions
are modeled as nodes in a hierarchical BN, with conditional dependencies on the state of the world and the
output from the parent node in the previous decision layer. Non-parametric decision models based on data
are obtained using a method based Parzen density estimation. Data was collected in a series of tests using a
multiple robot adversarial game simulator. The theory is applied to operator decision data and probabilistic
decision models are generated for both the strategic and the tactical hierarchical layers. Work is underway
to combine the decision models from the different hierarchical layers to achieve a complete human-robot
system BN model based on the data. Such models will be used to study adaptive autonomy, human-robot
interface optimization, and the implementation of automatic control of human level capability. They may
also be generated from observations to model adversaries’ strategies, or the behaviors of other types of object
of interest. Hence, the general probabilistic modeling framework promises to impact various complex and/or
adversarial applications requiring adaptive planning.

The ongoing research effort includes:

e Higher order decision models, i.e. when decisions are clustered in two distinct subspaces, will be
explored. Approaches include clustering of decision data and mixtures of Gaussians for automatic
identification.
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e Recursive models will be developed to include time dependency while maintaining statistical rigor of
the framework. Approaches include a log-likelihood receding horizon, underbounding the likelihood
for potential inference methods, and neural network tools with a statistical evaluation at the output.

e Structural Learning will attempt to find the best fit with minimal conditional dependencies in the BN
model. Approaches include using the Bayesian Information Criterion and a likelihood ranking.

e Performance Metrics and estimation methods to gauge performance level and identify causes for de-
creased productivity or mission failures in human-robotic systems will be studied. These metrics will
be useful as reliable utility measures for optimized adaptive autonomy and for the evaluation of user
interfaces, situation awareness, fatigue, and other factors.

Finally, two new RoboFlag tests are currently being implemented. The first aims at studying the use of
cooperative vehicle decision aids, and the second focuses on adaptive tasking,?? where the game will switch
between manual and decision aids with varying levels of autonomy in order to maximize performance.
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