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Abstract— A new method is presented for fusing conventional
continuous sensor observations with discrete multi-categorical
state-dependent information, which can be furnished by hu-
mans in many cooperative human-robot interaction problems.
The hybrid likelihood function for mapping between continuous
hidden states and categorical observations are specified via
softmax models. Although softmax models avoid discretization
of continuous states, they are challenging to implement for real-
time data fusion since they are not analytically integrable. An
approximation based on variational Bayesian (VB) methods is
presented here to obtain fast closed-form Gaussian solutions
to the desired posteriors in cases where the hidden continuous
states have Gaussian pdfs. A joint human-robot target local-
ization example illustrates the properties and utility of the VB
hybrid fusion strategy, which also applies more generally to
inference in hybrid Bayesian networks and mixture models.

I. INTRODUCTION

Problems of hybrid (i.e. continuous and discrete) esti-

mation are often encountered in human-robot interaction

(HRI) applications; since humans are bound to discretely

categorize the state of the world as an efficient way to

process and convey information, proper characterization and

use of humans as hybrid information sources is an essen-

tial step toward improving HRI and HR team performance

[1], [2]. With cooperative HR applications such as target

tracking and search-and-rescue in mind, refs. [3], [4] and

[5] explored direct incorporation of raw human sensory

observations for improving dynamic recursive Bayesian state

estimation (RBE). However, the ‘human sensor models’ used

in these studies cannot describe the generally nonlinear/non-

Gaussian relationships between continuous states and non-

binary categorical human observations.
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Fig. 1. Cooperative 2D localization of a static target by a human-robot
team. The index k denotes discrete time.

Motivated by [1], [3]-[5], Figure 1 illustrates a cooperative

search problem involving 2D localization of a static target

by a mobile robot and a human agent. The robot moves

through the search space and takes continuous bearings-

only measurements of the target’s position, while the human

independently reports the approximate relative range and

bearing between the robot and target using visual inspection.

Clearly, the human’s observations are not expected to be as

precise as, say, laser range measurements. Rather, the human

is expected to report observations that discretely categorize

the relative bearing (e.g. into canonical directions such as

‘North’, ‘NorthEast’, ‘East’, etc.) and the relative range (e.g.

in 2 m bins up to some maximum distance). For example,

the human might report that the target is ‘2-4 m NorthWest’

of the robot’s current location, or (in more natural terms)

that the target is ‘nearby’ the robot and ‘in front, to the left.’

The human’s observations can significantly improve the

target location estimate, which can be very uncertain if

found solely via the robot’s bearings sensor [6]. There-

fore, it is desired to fuse prior information of the target

position with the robot’s continuous measurements and the

human’s discrete observations via Bayes’ rule to update the

target position belief. From Figure 1, suppose for now that

p(X|B, Z) represents the robot’s belief of the target location

given its own available position and bearing measurements.

If p(D|X, Z) is the human’s discrete observation likelihood

given the true target and robot locations, Bayes’ rule gives

p(X|D,B,Z) =
p(D|X, Z) p(X|B, Z)

∫

p(D|X, Z) p(X|B, Z) dX
(1)

This raises two questions: (i) how to specify p(D|X,Z),
and (ii) how to compute (1) for efficient RBE? Answering

(i) requires finding a function that maps continuous robot

and target states to discrete probability mass functions. The

softmax function is such a distribution that is popular for

hybrid probabilistic models over m discrete categories [7],

p(D = j|Q) =
ewT

j q+bj

∑m

k=1 ewT
k

q+bk

, (2)

where Q = [Z, X]T , wk is the vector weight for class k

and bk is a scalar bias, for j, k ∈ {1, ...,m}. However, the
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normalizing integral in (1) becomes

∫

ewT
j x+bj

∑m

k=1 ewT
k

x+bk

p(X|B, Z) dX, (3)

which unfortunately cannot be evaluated analytically for any

p(X|B, Z). Therefore, (1) has no exact closed-form solution,

which prevents efficient exact hybrid RBE updates for X

(e.g. as in Kalman filtering for linear-Gaussian systems).

However, it is possible to obtain good approximations for

this hybrid Bayesian inference problem.

This paper presents a new approximate hybrid inference

approach based on variational Bayesian (VB) methods [8],

[9], [10]. The method applies to a broad class of system

models that use the softmax function to model discrete sensor

observations of states with Gaussian priors. The proposed

VB approximation yields fast, closed-form Gaussian pdf

posterior approximations, thus enabling efficient hybrid data

fusion for RBE. This VB method is also generally useful

for efficient inference in hybrid Bayesian networks [7], [8],

which have become increasingly useful for HRI [3], [11],

[12], [13]. Section II gives more background and Section III

details the VB method and its properties; Section IV demon-

strates these via the HR cooperative localization problem.

Section V gives conclusions and future work.

II. HYBRID PROBABILISTIC MODELS AND DATA FUSION

A. Softmax Likelihoods for State-dependent Discrete Sensors

The softmax model is often used in statistical pattern

classification [9], where it is desired find boundaries between

discrete classes as a function of an input space. The log-odds

of (2) gives the probabilistic ‘class boundaries’ as linear

hyperplanes in Q, where the weights control the location

of these boundaries for fixed Q and the biases shift the

boundaries from the origin. Softmax weights and biases

can be easily estimated from training data; in addition,

mixture-based extensions of (2) can be used to approximate

more complex nonlinear class boundaries (e.g. see [14]). For

clarity, we focus here on ‘basic’ softmax models. As this

paper focuses on hybrid fusion methods, we refer the reader

to [7], [14] for more details on hybrid probabilistic modeling.

B. RBE and Hybrid Bayesian Data Fusion

Using (1) as an example, if B and D could always be

approximately fused with a Gaussian prior for X to yield

a Gaussian posterior, then Gaussian sufficient statistics need

only be maintained for efficient RBE of X [6]. This allows

for the fact that good Gaussian approximations still exist even

when exact fusion for B alone is impossible (e.g. EKFs [6]).

To retain Gaussian posteriors for hybrid data fusion, Monte

Carlo techniques can be used [15]. However, these require

computationally intensive methods to ensure accuracy, which

can hamper real-time execution. While discretization is a

‘simple’ solution, it scales poorly and loses the Gaussian

representation. Ref. [8] gives a VB approximation to the

binary discrete inference/fusion problem in hybrid Bayesian

networks. This VB method approximates the true joint pdf

as the product of the prior and a Gaussian lower bound
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Fig. 2. For standard normal prior (green): (a) likelihood (blue) is well-
approximated by Gaussian bound (black), so approximate joint pdf is
very close to true one (magenta=blue×green); (b) likelihood approximation
degrades at steeper softmax weights, but joint pdf is still well-approximated.

to a binary hybrid likelihood. While this method gives fast

closed-form solutions that are good Gaussian approximations

to the true posterior, it is limited to m = 2. We present a

generalization of the VB method for m ≥ 2 next.

III. VB FUSION FOR MULTI-CLASS OBSERVATIONS

A. General hybrid inference problem formulation

Let the unobserved random state vector X ∈ R
n have

Gaussian prior p(X) = N (µ,Σ) with known mean µ ∈
R

n and covariance Σ ∈ R
n×n. Let D be an m-valued

discrete sensor variable for some integer m ≥2, where

p(D = j|X) follows (2) with known weights wj ∈ R
n

and biases bj ∈ R for j ∈ {1, ...,m}. We assume here

that all available continuous sensor measurement updates

have already been performed via Bayes’ rule, so that p(X)
is generally a Gaussian posterior from purely continuous

fusion. The posterior pdf of X given D = j is thus

p(X|D = j) =
1

C
p(X, D = j) =

1

C
p(X) p(D = j|X)

=
1

C

∣

∣2πΣ−1
∣

∣ e−
1

2
(x−µ)T Σ−1(x−µ) ewT

j x+bj

∑m

c=1 ewT
c x+bc

, (4)

where C ≡
∫

p(X)p(D = j|X)dX . Inspection of (4) re-

veals that the joint pdf is neither Gaussian nor analytically

integrable with respect to X , due to the denominator of (2).

B. Derivation of Approximate Posterior

We now derive a closed-form variational Gaussian approx-

imation to p(X|D = j) based on the idea that the joint pdf

p(X, D = j) = p(X) p(D = j|X) is well-approximated by

an unnormalized Gaussian function over X; this is illustrated

for the binary softmax (i.e. logistic) case [8] in Figure 2.

Replacing the softmax function (2) with an unnormalized

Gaussian f(D = j,X) gives

p(X, D = j) ≈ p̂(X, D = j) = p(X) f(D = j,X) (5)

C ≈ Ĉ =

∫

p̂(X,D = j) dX = P̂ (D = j). (6)

Note that now p̂(X, D = j) is an unnormalized Gaussian

and Ĉ is closed-form. This leads to a closed-form normalized

Gaussian approximation to the posterior,

p(X|D = j) ≈ p̂(X|D = j) =
p̂(X,D = j)

Ĉ
= N (µ̂, Σ̂),
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where µ̂, Σ̂ and Ĉ can be obtained by inspection of (5). For

m ≥2, f(D = j,X) can be obtained via the variational soft-

max lower-bound proposed in [10]. This bound is obtained

by replacing the denominator in (2) with a variational upper

bound composed of a product of m unnormalized Gaussians.

Namely, for any set of scalars α, ξc and yc for c ∈ {1, ...,m},

[10] shows that

log

(

m
∑

c=1

eyc

)

≤ α +

m
∑

c=1

yc − α − ξc

2

+ λ(ξc)[(yc − α)2 − ξ2
c ] + log(1 + eξc) (7)

where λ(ξc) = 1
2ξc

[

1
1+e−ξc

− 1
2

]

. The variables α and ξc are

free variational parameters for minimizing the upper bound

in (7) for known yc to provide the tightest possible (lower

bounding) approximation to the original softmax function

(2). Zeroing the derivatives with respect to α and ξc gives

ξ2
c = y2

c + α2 − 2αyc, α =
(m−2

4 ) +
∑m

c=1 λ(ξc)yc
∑m

c=1 λ(ξc)
. (8)

Here, yc = wT
c x + bc; however, since X is unobserved,

each yc is an unknown random variable. To handle this,

an efficient procedure for finding α and ξc that maximize

the ‘average’ value of (7) is presented in the next section.

Assuming for now that α and all ξc are fixed, (7) can be

used to obtain an approximate Gaussian posterior. From (2),

log p(D = j|X) = wT
j x + bj − log

(

m
∑

c=1

ewT
c x+bc

)

. (9)

Replacing the last term with (7) (with yc = wT
c x + bc),

simplifying terms and exponentiating, we get

f(D = j, x) = exp(gj + hT
j x −

1

2
xT Kjx), (10)

where gj =
1

2



bj −
∑

c6=j

bc



+ α(
m

2
− 1)

+

m
∑

c=1

ξc

2
+ λ(ξc)

[

ξ2
c − (bc − α)2

]

− log(1 + eξc), (11)

hj =
1

2



wj −
∑

c6=j

wc



+ 2

m
∑

c=1

λ(ξc)(α − bc)wc, (12)

Kj = 2
m
∑

c=1

λ(ξc)wcw
T
c , (13)

and f(D = j,X) ≤ p(D = j|X) from (7). Note that f(D =
j,X) is an unnormalized Gaussian over X . Now,

p(X) = exp(gp + hT
p x −

1

2
xT Kpx), (14)

where gp = − 1
2 (log[|2πΣ|]+µT Kpµ), hp = Kpµ and Kp =

Σ−1. Substituting (10) and (14) into (5) therefore gives

p(X, D = j) ≥ p̂(X, D = j) = p(X) f(D = j,X) (15)

= exp(gl + hT
l x −

1

2
xT Klx) (16)

where gl = gp + gj , hl = hp + hj , and Kl = Kp + Kj .

This an unnormalized Gaussian approximation to the joint

pdf; normalization gives the desired approximation to the

posterior p̂(X|D = j) = N (µ̂, Σ̂), where

Σ̂ = K−1
l , µ̂ = K−1

l hl. (17)

Interestingly, these updates to the Gaussian state prior are

very similar to the updates of a state-space information filter

for linear-Gaussian systems [6]. In particular, the information

matrix update in (17) is independent of the observed sensor

value. Also, since hl is analogous to an information state,

the softmax weights wj can be viewed as the ‘average

information’ contained within each class j about X . Indeed,

the degree of ambiguity between the discrete classes given a

particular state X = x is analogous to continuous sensor

noise. Larger weights imply more information and less

ambiguity for a given x (i.e. less noise between discrete

classes), while softer weights imply the opposite. If class j is

‘well-separated’ from all other classes throughout the state-

space X , then class j observations provide much information

about X . If observed class j is not easily distinguished

from other classes, j contributes little to (17) via (12) and

(13). Finally, it should be noted that this approximation

is ‘variational’ since it can be shown that p̂(X|D = j)
minimizes the Kullback-Leibler divergence (KLD) functional

KL[G(X)||p(X|D = j)] between any Gaussian pdf G(X)
derived via (7) and the true (non-Gaussian) posterior.

C. Variational Parameter Optimization

To find α and ξc, we maximize the approximate marginal

log-likelihood of the observed data (i.e. the evidence),

log Ĉ = log

∫

p(X) f(D = j,X) dX, (18)

where log Ĉ ≤ log C. Since (18) resembles a marginal

data log-likelihood, the EM algorithm can be invoked to

efficiently find the optimal α and ξc along with p̂(X|D = j).
In the E-step, p̂(X|D = j) is obtained from (17) for fixed α

and ξc; in the M-step, p̂(X|D = j) is held fixed and used to

re-estimate α and ξc from (8) using the expected values of

yc. In this case, EM always leads to a unique VB posterior

p̂(X|D = j); while proof is omitted due to limited space, this

stems from two facts: (i) VB approximations monotonically

converge to local maxima of the true posterior [9] and (ii)

log p(X|D = j) is convex. To gauge the EM algorithm’s

monotonic convergence, (18) can be computed after each

M-step as

log Ĉ = 〈yj〉 − α +
m
∑

c=1

{

1

2
(α + ξc − 〈yc〉)

−λ(ξc)[
〈

y2
c

〉

− 2α 〈yc〉 + α2 − ξ2
c ] − log(1 + eξc)

}

−
1

2



log
|Σ|
∣

∣

∣Σ̂
∣

∣

∣

+ tr(Σ−1Σ̂) + (µ − µ̂)T Σ−1(µ − µ̂) − n



 ,

where 〈yc〉 = wT
c µ̂ + bc,

〈

y2
c

〉

= wT
c

(

Σ̂ + µ̂µ̂T
)

wc + 2wT
c µ̂bc + b2

c
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TABLE I

VB HYBRID FUSION EM ALGORITHM

0. Given: µ, Σ, D = j, known softmax weights wk and biases bk ,

arbitrary α and arbitrary ξc for j, c, k ∈ {1, ..., m}

1. E-step: for all fixed ξc and α,

(a) compute µ̂ and Σ̂ (eq. 17)

(b) compute 〈yc〉 and
〈

y2
c

〉

2. M-step: for all fixed 〈yc〉 and
〈

y2
c

〉

,

for i=1:nlc

(a) compute all ξc for fixed α (eq. 8)

(b) compute α for all fixed ξc (eq. 8)

end

3. Compute log Ĉ; if not converged, Repeat 1 and 2. Otherwise, stop.

Table I summarizes the VB hybrid fusion EM algorithm.

Note that α and ξc are non-linearly coupled in the M-step

via (8); this simply requires an extra inner-loop for iterative

convergence, where typically nlc ≤15. The number of EM

steps needed for convergence (defined by some tolerance on

the change in log Ĉ) will vary with the application, though

the computations can be done in real-time, as shown later.
D. Properties

The VB hybrid inference method for binary softmax

likelihoods (m = 2) has several desirable properties [8],[16]:

(i) its closed-form Gaussian approximation is fast and easy

to compute, (ii) its posterior mean is very close to the

true posterior mean, (iii) it is insensitive to the observation

likelihood, and (iv) it is unique (i.e. no local maxima).

These properties also hold for the proposed softmax VB

method in the general case of m ≥ 2. Property (i) implies

that real-time approximate hybrid data fusion is feasible

without costly discretization or numerical integration of the

state variables. Since the Gaussian approximate posterior un-

der hybrid observation updates ensures that all future hybrid

updates yield (approximate) Gaussians, only the sufficient

statistics need to be maintained for efficient RBE.

Property (ii) implies that the VB approximate mean is an

excellent approximate MMSE estimator with hybrid observa-

tions, since the optimal MMSE estimator is the true posterior

mean [6]. Note that this gives VB methods an advantage over

MAP-based Gaussian posterior approximations, which can

place too much probability mass in regions of low support

near asymmetric modes (e.g. see Figure 2(b)). VB Gaussians

‘compensate’ for posterior asymmetry by shifting closer to

the true posterior mean [16].

Property (iii) implies robustness to unlikely evidence

which ‘disagrees’ with the prior or is ‘surprising’ given

its low probability. This gives VB a key advantage over

fast importance sampling methods, which degenerate when

samples are drawn far from the true posterior [15]. Markov

Chain Monte Carlo sampling methods can overcome this,

but can be too slow for real-time use. Finally, property (iv)

guarantees that the EM algorithm in Table I converges to

a unique p̂(X|D = j) for any initial choice of α and ξc.

This is important for cases in which complex priors are

modeled as Gaussian mixtures and complex likelihoods are

mixtures of softmax models, since all modal contributions

in the resulting posterior can be tracked. Posterior mode

loss often occurs with Monte Carlo approximations and has

important consequences in practice (e.g. see [17]).
IV. APPLICATION TO HR COOPERATIVE ESTIMATION

A. Model Formulation

Figure 3 shows the hybrid Dynamic Bayesian Network

(DBN) model of the HR cooperative localization problem

from Figure 1, where X is the 2D position of the static

target. It is assumed that the robot’s position Z(k) is always

known at time step k, so that p(Z(k)|Z(k − 1)) is arbi-

trary (the case of unknown Z(k) is considered later). The

robot bearing measurement B(k) has a known likelihood

p(B(k)|Z(k), X) that admits a Gaussian ‘partial posterior’

p(X|Z1:k, B1:k, D1:k−1). The human’s sensor model likeli-

hood p(D(k)|Z(k), X) is given by (2) for some discrete

label set D; this model is assumed without loss of generality

to be independent of the human’s location. We now illustrate

the VB hybrid fusion method via different localization sce-

narios with m > 2. For clarity, we use different Gaussian

target priors and softmax models in each case, and only

focus on the discrete sensor update at a single time step. For

comparison, we also examine fusions obtained by ‘exact’

methods and multiple trials of likelihood weighting (LW)

importance sampling [7]. Note that LW behaves very sim-

ilarly to bootstrap particle filtering, since the measurement

likelihood is used as the importance weight [15].

B. 1D Localization Scenario

Assume the y coordinate of X is known to be y = 0
and that Z(1) = [0, 0]T ; the discrete fusion examined

here occurs at k = 1 before fusion of any continuous

B(k). The human provides D = j, where j ∈ D =
{‘Far West’, ‘Near West’, ‘Next To’, ’Near East’, ‘Far East’}
(m =5). From the DBN model and Bayes’ rule,

p(X|D = j, Z1) =
p(X)p(D = j|X, Z1)

∫

p(X)p(D = j|X, Z1)dX
. (19)

Figs. 4 (a)-(c) show the true and approximate posteriors for

each of the fusion methods for three different scenarios,

each with a different discrete observation j and Gaussian

prior (the true X in each case is not shown for clarity

of illustration). The softmax likelihoods for each class are

shown as dashed lines. The observations j in (a)-(c) are ‘Near

West’, ‘Next To’, and ‘Near East’, respectively; the true

posteriors (magenta) were obtained by numerical integration.
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Fig. 3. Hybrid DBN model of the human-robot localization problem. The
joint pdf is given by the product of the local conditional distributions for
each node. Only the static target location node X is unobserved.
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Fig. 4. Illustration for 1D cases.

Case Prior µ,σ2 True Posterior µ,σ2 VB posterior µ,σ2 LW posterior µ,σ2 VB time, EM steps LW time, SE

a -2,4 -3.5155, 1.1386 -3.3862, 0.2097 -3.5458±0.0640, 1.0913±0.0252 1.6e-02 s, 18 1e-03 s, 50 %

b -6.75,4 -2.0717,0.8594 -1.9949, 0.2412 -2.1571+/-0.2041, 0.8969+/-0.1314 1.6e-02s, 16 1e-03 s, 15 %

c -9, 8 2.1404, 1.0087 2.0559, 0.2443 -0.4659+/-0.8105, 0.2488+/-0.0952 1.6e-02s, 10 1e-03 s, 5.2 %

The table below Fig. 4 shows the means and variances for

the Gaussian prior, the true posterior and the approximate

Gaussian posteriors following the discrete fusion updates.

10 trials of LW with 500 samples were used to generate the

statistics (mean and std. dev.) for the LW posterior estimates,

and the best LW solution over all trials is plotted in blue for

each case in Fig. 4. The table also gives the times (in Matlab)

needed to run each approximate fusion update and relevant

measures of computational efficiency. For VB, the number

of EM steps for a converegence tolerance of 1e-3 on (18)

is shown (starting from the same random initialization of α

and ξc in each case); for LW, the sampling efficiency (SE)

is shown (defined by the effective sample size divided by

the number of samples) [15]. The SE is a figure of merit

for a Monte Carlo estimator: larger SE means that samples

are representative of the true posterior, so that subsequent

sample-based estimates are more reliable.

From the table, we see that the VB posterior mean is

very close to the true posterior mean in all cases, and that

the VB computations are real-time (under 0.02 secs in all

cases). VB’s robustness is demonstrated by the fact that, even

though the observations in cases (a)-(c) are progressively

more ‘surprising’ with respect to the prior, the closeness of

the VB mean to the true posterior mean is always maintained.

We also see that the number of EM steps needed in each

case is small, so that convergence to the unique posterior

approximation is quick. The LW Gaussian posterior does

well in case(a) since the prior ‘agrees’ with the discrete

observation. However, the SE in this case is only 50%,

which means only half of the 500 samples drawn in the

1-D space are contributing to estimate. LW starts to show

much lower SE (and larger estimation variance) in the cases

(b) and (c). The results are particularly bad in (c), as the

best LW Gaussian posterior is off in the tail of the true

posterior distribution. In contrast, VB shifts towards the high

probability mass region of the true posterior. Notice that in all

three cases, the variational estimate of the posterior variance

is consistently optimistic; this is typical of VB methods [9].

C. 2D Localization Scenario with Continuous Measurements

Now consider a scenario where the robot moves deter-

ministically to the right with constant velocity starting from

Z = [1, 1]T , moving 1.5 m per time step. The bearing

sensor now takes measurements to the target with zero mean

Gaussian noise with variance 0.25 rad2, and the target’s true

location is x = 5 m, y = 5.7 m. The robot takes 3 steps with

1 measurement each and fuses them with a diffuse Gaussian

target prior to produce posterior p(X|B1:3, Z1:3). Non-linear

least squares (NLS) is used for nearly optimal continuous fu-

sion to give a Gaussian posterior with mean µNLS at the NLS

solution and covariance matrix ΣNLS based on the NLS Hes-

sian at µNLS [6]. The human provides no observations for

k=1 or 2; at k=3, the human provides one of m = 24 possible

observations D(k) ∈ D = {‘0-2 m’, ‘2-4 m’, ‘ > 4 m’} ×
{‘North’, ‘NorthWest’, ‘West’, ..., ‘NorthEast’}, whose like-

lihood is modeled by (2) with Q = [Z(k), X]T . The

realization used is shown in Figure 5; the whitespace cor-

responds to Q where p(D = j|Q) ≈ 1 for some j (e.g.

(xrel, yrel) = (0,−3) is where D(k) is most likely ‘2-4

m South’). To account for the fact that D(k) gives relative

range and bearing information, the softmax biases for each

class c are adjusted via b′c = bc − wT
c Z(k) so that p(D|Q)
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Fig. 5. Softmax contours of p(D = j|Z(k), X) for m = 24 discrete
human observations j of range and bearing as a function of X − Z(k).
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always centers on Z(k).
We examine the fusion of D(3) =‘> 4 m North’ for

time step k=3 with ‘prior’ p(X|B1:3, Z1:3). The black cross

and 2σ ellipse in Fig. 6 shows µNLS and ΣNLS for

p(X|B1:3, Z1:3), and the colored contours show the likeli-

hood for D(3) =‘> 4 m North’ from Fig. 5 (the true X and

Z(k) are also shown). The ‘best Gaussian’ approximation

to the true fully fused posterior p(X|D(3), B1:3, Z1:3) is

shown in Fig. 6 by the blue ellipsoid, where ‘exact’ posterior

mean µ∗ and covariance Σ∗ are shown. These parameters

were estimated using 5000 runs of random-walk Markov

Chain Monte Carlo sampling, which required 5 secs to

run. This represents the best Gaussian approximation to

p(X|D(3), B1:3, Z1:3) in the ‘moment-matching’ sense [9].

We use this here to show how closely the VB and LW fusions

come to matching µ∗ and Σ∗. It is clear from the best

Gaussian approximation that fusion of D(3) improves the

NLS estimate: µ∗ is closer to the true X and |Σ∗| ≤ |ΣNLS |.
The VB and LW fusions are shown in Fig. 6 by the

magenta and green Gaussian ellipsoids, respectively. 10 LW

trials were run with 100 samples to produce average statistics

for the µ and Σ estimates, and the best LW Gaussian estimate

(with smallest ||µ−µ∗||
2) is shown in the plot. VB and LW

both have µ very close to µ∗, and both methods are optimistic

with respect to Σ∗. VB achieved convergence to the same

previous tolerance with 18 EM steps in 0.12 secs; this longer

time arises since m is larger. LW took an average of 1e-03

secs but only had SE of about 15%, since µNLS and ΣNLS

‘disagree’ with D(3).

V. CONCLUSIONS AND FUTURE WORK

We have derived and demonstrated the properties and

utility of a new technique for VB fusion of multi-class

discrete observations of continuous states with conventional

continuous sensor measurements. This method produces fast

closed-form Gaussian posterior approximations and has sev-

eral nice properties that make it suitable for online hybrid

inference. The VB method has immediate real-time applica-
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Fig. 6. Setup and results for 2D hybrid fusion scenario.

tions to cooperative HR estimation and is easily applicable

to other HRI problems. We have also been able to extend the

theory of Section III to handle Gaussian mixture priors and

softmax mixture likelihood functions, so that approximate

VB posteriors are guaranteed to be unique Gaussian mixtures

in more complex settings. These extensions also enable

robust VB approximate inference in general hybrid Bayesian

networks via the junction tree method, as described in [8] for

the binary VB method; these extensions are not given here

due to limited space.

We are working on fixing the VB fusion’s optimistic pos-

terior covariance, which can lead to inconsistent estimates.

As [16] notes for the binary VB method, the closeness of the

VB mean to the true posterior mean can be used to refine

the covariance (e.g. via post-hoc sampling). As Section IV

mentions, the VB method could also be used in the HR

localization problem when the robot location is uncertain.

For this, we intend to use the VB method to obtain Rao-

Blackwellized importance sampling estimates [15] of target

location based on fusion of discrete human observations,

robot bearing sensor data, and robot pose information.
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