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Abstract— This paper addresses the problem of coordi-
nating a team of mulitiple heterogeneous sensing platforms
searching for a single lost target. In this approach, the utility
of a control sequence is a function of the probability density
fumction (PDF) of the target state. Each decision maker bailds
an equivalent estimate of this PDF by communicating and
fusing the information from the other sensor nodes. Coupled
utilities incite the agents to collaborate and to agree on the
next best set of actions. Decentralized cooperative planning
is achieved via anonymous negotiation based on communi-
cation of expected observed information. Simulation results
demonstrate the efficiency of the cooperative trajectories for
a team of autonomous airborne search vehicles.

1. INTRODUCTION

Interconnecting a number of active mobile sensors into a
network may offer great potential for improved area cover-
age, robustness and responsiveness. The question remains
of how to coordinate the sensing platforms effort in an
optimal manner.

This paper explores the issue of optimal contro] deci-
sion making from a team perspective. Communication and
coupled utility between decision makers are considered to
be the fundamental mechanisms underlying cooperation.
The focus is on obtaining, in a completely decentralized
fashion, the optimal cooperative solution that considers the
effects of everyone’s control decisions on the global ntility.
Ref, [11}] showed that this type of decentralized active
sensing problem is equivalent to a distributed computation
problem {31 as long as the individual decision makers
have a way of evaluating the effect -of the teammates
predicted sensing actions on the global wutility. For the
searching problem, the information representation through
which the individual utilities are coupled is in the form of
the Probability Density Function {PDF) of the targer state
{7]. In the proposed negotiation algorithm, the decision
makers maintain equivalent estimates of the future PDF.
They anonymously exchange their expected observation
likelihoods and iteratively adjust their reactions 1o the
teammates previous actions until the best reaction, to the
previous action, is itself, leading to the Nash equilibrium
[14) for a given time horizon. This sort of decentralized
architecture offers increased reactivity, robustness and scal-
ability by avoiding the overheads, bottlenecks and single
failure points associated with centralized structures.

The paper is organized as follows. First, Sec. II reviews
the decentralized Bayesian filtering algorithm that accu-
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rately maintains and updates the information about the
target state. Then Sec. I formulates the team decision
problem and introduces the decentralized Bayesian negoti-
ation algorithm. Sec. IV describes the searching problem.
Sec. V demonstrates the efficiency of the cooperative
search strategy for a team of unmanned air vehicles (UAVs)
searching for a single stationary target. Finally, conclusions
and ongoing research directions are highlighted.

II. ACTIVE BAYESIAN SENSCOR NETWORK

This section reviews the decentralized Bayesian frame-
work introduced in [7] for coordinating the search effort
of a robotic team, The Bayesian approach is particularly
suitable for combining heterogeneous non-Gaussian sensor
observations with other sources of quantitative and quali-
tative information [2], [19].

A. Decentralized Bayesian Filtering

In the searching problem, the unknown variable of
interest is the target state vector at time k, denoted xi € R™
which in general describes the target location but could
also include its attitude, velocity, and other properties. In
this paper the superscripts r and s; indicate a relationship
to the target and the sensor i respectively. The subscripts
are used to indicate the time index. The purpose of the
analysis is to find an estimate for p(x}|z14), the PDF over
%}, given the sequence 24 = {Z;:i=1,.., N, j=1,...k}
of all the observations made from the N, sensors on board
the search vehicles, z; being the observation from the i*
sensor at time step j. The analysis starts by determining
a prior PDF p(x}|z0) = p(x})) for the target state at time
0, given all available prior information including past
experience and domain knowledge. H nothing is known
other than initial bounds on the target state vector, then a
least informative uniform PDF is used as the prior. Once
the prior distribution has been established, the PDF at time
step k, p(x;|z1..). can be constructed recursively using the
prediction and update equations alternatively.

1) Predicrion: Suppose the system is at time step k —
1 and the latest PDF update, p(x}_,|z1.—1), is available.
Then the predicted PDF of the target state at time step
k is obtained from the following Chapman-Kolmogorov
equation

pixize1) = [pOSIL_ ) [, (1)
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where p(x{[x}_,) is a probabilistic Markov motion or
process model which maps the probability of ransition
from a given previous state X} _, to a destination state x;
at time k. The process model is a function of the equations
of motion for the target and of the known distribution
on their inputs. Various examples of process models with
constraints can be found in [6].

2) Updare: At time step k, a new set of observations
2y = {2},....2y'} becomes available. For each sensor i,
the mapping of the target state observation probability,
z' € R™, for each given target suate, x| € R", is denoted
p(zp!xl) and will be referred to as the observation like-
lihood, or sensor model. Assuming all the observations
to be conditionally independent, the PDF update from the
prediction stage (1), p(x§|21:4~1), is performed using the
following Bayes rule with the normalization coefficient K,
also referred to in the literature as the “independent opinion
pool”

& .
p(x|e1e) = KP(XHth-l)HP(ZH"i)

2)
i=l
where the normalization coefficient X is given by
Moo
k=1 [lp&manITrGERlx @
=1

B. Active Bayesian Sensor Node

Packaging a physical sensor with its own Bayesian
filtering processor is an attractive way of making the sensor
mobile and modular. Such a Bayesian sensor unit can be
taken anywhere to take measurements about the world.
Mounting the Bayesian semsor unto an actuated mobile
Platform and coupling it to its own Controller makes
it an active Bavesian sensor. Based on the latest belief
about the world p(x}_,|z'*7") and the sensor swate x;'_,
the Controller sends a command uy_, to the Platform to
place the sensor in a desired position x’k‘;‘e with respect
to the world to take the next observation. iTig. 1 depicts
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Fig. 1. General aclive Bayesian sensor node in a fully connected nctwork
with broadcast communications.

algarithmically the Bayesian filter and how it interacts
with the Controller, the Platform, and the sensor to form
@ node in a fully connected network, To allow peint-to-
point communication between the nodes of the network
and recovery from transmission failures the node may be
augmented with an extra filter per communication channel
called a channel filter [5]. The Platform block represents
the actuators and dynamics of both the sensor and the
mabile vehicle, if present, on which the sensor is mounted.
Any number of sensors can be attached to a particular

" fusion node. For simplicity in this paper, each sensor is

packaged with its own fusion node and controller.

For the searching problem, the process model, and
especially the target PDF can be highly non-Gaussian and
the complete description of the density function must be
maintained. This prevent the use of parametric implementa-
tions of the Bayesian filter such as the Kalman filter. In this
paper the prediction and update equations wilt be evaluated
numerically using a grid based discrete approximation of
the process model, the observation likelihood and the target
PDE

III. DECENTRALIZEDR COOPERATIVE CONTROL

Each of the N; sensor platform is governed by its own
dynamic model in the form
5i

X =BG ud,wy Q]
where wi" is the vector representing the process noise and
the external forces acting on the system i, and where u;"
is the corresponding control input vector at time k. The

controller objective is to produce a command that will place
the system in a desired state.

A. Optimal Trajectory

Optimality is defined in relation to an objective, or utility
function [20]. For multiple systems, an optimal cooperative
control solution must the group decision that is jointly op-
timal. Given N; lookahead steps, the global utility function
is denoted J(u,Ny), where u = upy, = {ully, ... 0105 } is
the control action sequence for ali platforms over a time
horizon of length T = N, 8. The optimal control trajectory
u” js the sequence that maximizes that wtility subject to
the contrel bounds u;p < u < uyp and the constraints
glu,N;) < 0.

S1¥

w= (gl u;"f,v:} = argml;llx..’(u,Nk)

&)

To be truly optimal, the trajectory should be evaluated
for the entire duration of the mission. However, the com-
putational cost for such optimal plans is subject to the
“curse of dimensionality”. With increasing lookahead depth
and number of agents, the solution becomes intractable. In
practice only solutions for a restricted number of lookahead
steps are possible. One way to increase the lookahead
without significantly increasing the cost of the solution is
to have a piecewise constant control sequence {see [12]
and [9]) where each control parameter is maintained over a
specified number of time steps. Such control solutions are
said to be quasi-optimal as they compromise the global
optimality of the control solution for a lower computa-
tion cost, but nevertheless, depending on the problem at
hand and because of their anticipative characteristic, often
provide better trajectories than the ones computed with
the same number of control parameters but with shorter
time horizons. A rolling time horizon solution is when the
planned trajectory is recomputed at short intervals to keep
the lookahead constant as the agents progress forward. At
time step k, the utility for a given horizon depth of Ny
steps will be denoted Jp{u,Ny) with u = p, 1 being
the action sequence starting at step k.
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B. Team Utility Structure

The global utility J; can be decomposed inte its indivi-
dual components as in

N, Ny
Jl’(“st) = ZJI:J (u:Nk) = E"’? (usf:ﬁs,:th) (6)

i=t i=1
where each J) : K™ » R corresponds to the reward
received by the ith decision maker within a team for
a control sequence u' = u,’c';HNk_l given the teammates
strategy W% = {u/, 4¥g1 + J # i}, Such situation, where
a decision maker’s likely reward depends on the actions
of others is called a game. In a game, a decision maker
needs to choose a strategy that maximizes his utility not
only based on his individual preferences alone, but on
the likely actions of the other teammates as well. The
optimal control sequence u* satisfies the following person-
by-person optimality condition, also referred to as the Nash

equilibrinm solution [13]. That is

FT N > S0 TN, Ve e US Y (7)

where #* = {07, j # i}. At equilibrivm, a0 in-
dividual cannot diverge from his Nash strategy without
decreasing his wtility. A game is inherently a distributed
problem and as such is well suited to be solve by distributed
computation approaches,

C. Distributed Computation Solution

In this section it is proposed to appreach the multi-
vehicle multi-sensor optimization problem (5) as a dis-
tributed computation problemn [3]. By taking advantage of
the resources from multiple processors, distributed com-
putation methods have a significant speed advantage over
centralized methods. The centrol problem (5) is broken
down into smaller components. At every iteration, each
processor optimizes its own component and communicate
the result on the network. The proposed block-iterative
non-linear algorithm is a coordinate descent type technigue.
It consists in iteratively fixing all the components of u,
except for the /th block-component and then maximizing
Jie{u,Ny) = Ji(w¥ @ N, with respect to u%, and repeating
for all components until convergence, i.e. until condition
(7) is satisfied.

When the maximizations with respect to the different
components, w¥’s, are carried out simultaneously it may
be referred to as a Jacobi type algorithm. When the maxi-
mizations are performed sequentially for each component,
it is referred to as a Gauss-Siedel type algorithm [3].

Each optimization iteration ! requires the parallel, or
sequential, solution of the individual optimization problems

Si¥ 5) 5 =% _ 5 w8
ui =argmax J'(u¥ my_ Ne) = arg max Je(u™, Wy, Ne)

(8
where u“’L] corresponds to the information (possibly obso-
lete} controller ¢/ has about the other teammates decisions,
and u" is the comesponding best response solution of
decision maker / at iteration step /. As such, (w}/",W}_,)isa
pareto-optimal sojution, The algorithm has converged when

.

the best response to everyone else’s best response is fixed,
In practice, the iterations are stopped when the optimization
error has decreased under a desired accuracy threshold, i.e.
when Su[jj* = "ff " —wyj_, <€&,Vi. It is important to notice
however that such an equilibrium point might constitute ,
a local maximom of Ji. Notice that the number of local
maxima increases with the pumber of components in the
planning sequence. In some situations, the optimization
algorithm might get stuck oscillating between different
equilibrium points. To prevent this sort of situation, a
relaxation update equation is used

ul’;' = “f;—l + a;(ul’;'* - uf}_l) =(1- a,)uf;_l + agu?}" ()]

where oy €]0,1] is the stepping or relaxation parameter
that specifies the amount by which the solution is moved
towards the best response. The relaxation parameter may
vary throughout the negotiation process. For example,
the algorithm may start with a value close 10 one in
order to converge quickly to a coarse estimate, and then
progressively decreased towards zero to refine the selution,
Experience has also shown that a random g is greatly
wseful to break the symumetries causing the algorithm to
oscillate.

Reference [21] introduced a slightly different algorithm
that exploits this idea of adding a stochastic element
to the update equation. That algorithm was successfully
applied in [11] to a multi-vehicle contrel problem for target
identification. Simulated annealing is another optimization
technique that uses stochastic updates to get out of local
maxima. A version of the distributed evolutionary simu-
lated annealing technique presented in [1] is also currently
under investigation.

D. Bayesian Negotiator

As discussed in the abeve section, in a standard dis-
mibuted computation approach, after each iteration ! the
controller processor { wounld need the components from
the other the controllers W) , in order to evaluate the
global utility. This implicitly means that processor i would
require the knowledge of the other sensors’ location or
characteristics, e.g. observation model and vehicle model,
and would raise scalability issues. Rather, each controller
builds an estimate of the future target PDF based on the
current estimate and the predicted contributions received
from the teammates. Based on this estimate, an appropriate
reaction is evaluated.

Fig. 2 graphically depicts the controller negotiation algo-
rithm. At a given time step k and iteration /, the controller
i fuses the latest density estimate p(x}|z;.) obtained from
its fusion node with the predicted observation likelihoods
plz kN =1 [x})’s associated with the optimized compo-
nenis ui,’;]’s from all the other processors j # f computed
on the previous iteration. Based on the resulting predicted
density estimate p(x,’.(|z|;k,iz+l:k+‘vk‘171), the best response
;" is computed and the component uj is updated. If
the optimization has not converged, the corresponding
observation likelihood p(z} ., g |¥e) s then broadeasted
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Fig. 2. Bayesian negotiator in a fully conneeted network with broadcast
commumcations.

to the other controllers for another iteration. Otherwise,
uit = uf; L N i§ sent to the Platform for execu-
tion, In this paper the individual optimization problems
are solved using a constrained non-linear programming
technique called Sequential Quadratic Programming (SQP)
[15].

Notice that the negotiation algorithm as presented above
is valid only for a stationary target, i.e. there is no process
or prediction step involved. To take into account the process
model, instead of being communicated in pre-combined
blocks as ;.| 4, w1 %), Vi, the set of all the pre-
dicted observation likelihoods from each controlier i/ would
need to be broadcasted separately, as in {p(z, ,, ,Ix{):
n=1,...,N¢}’s, Vi, and stored so they could be fused at the
right time in the optimization step. This would of course
increase significantly the communication loads.

Also, the above iterative algorithm can be executed
asynchronously. As discussed in [4], in an asynchronous
implementation, the processors are allowed to iterate at
their own pace on their respective component and are not
required to wait to receive all messages generated during
the previous iteration. If the latest predicted observation
likelihood updated by some other processor is not available,
then some outdated likelihood is used instead. Evidences
suggest that asynchronous iterations converge faster than
their synchronous counterparts [4]. The details of an asyn-
chronous implementation of the above Jacobi algorithm
robust to communication delays and transmission failures
with point-to-point communication is out of the scope of
this paper and will be the subject of an ulterior publication.

IV. THE SEARCH PROBLEM

This section describes the equations for computing the
probability of detection of a lost object referred to as
the target by using the outputs of the prediction and
update equations from Sec. II-A, An equivalent but dif-
ferent derivation is presented in [7]. Further details on
the searching problem can also be found in [18] and [16]
(Chap.9).

Let the target detection likelihood {observation model)
of the i sensor at time step k be given by p(z, = Dj|x})
where D] represents a ‘detection’ event by sensor { at time
k. The likelihood of ‘no detection’ by the same sensor
is given by its complement p(Dy|x}) = 1 ~ p(Di|xL). The

combined ‘no detection’ likelihood for all the sensors at
time step k is simply a multiplication of the individual ‘no
detection’ likelihoods
N
p(Dilx) = T1 (D)) (10
i=1
where Dy = DyN...N Dy represents the event of a ‘no
detection’ observation by every sensor at time step k. Ne-

glecting the normalization factor K in the update equation
(2) gives

NJ
PR zi) = p(x |20 1) T Pz Ix) (11)
i=1
The advantage of not normalizing the target PDF at every
update is that the joint probability of failing to detect the
target in all of the steps fram 1 to k, denoted @, = p(D14),
can be directly obtained from the integration of the pseudo
PDF update (11)

0= [ p4Ds)ax = [ pdBracr) D) s

{12)
where D) corresponds to the set of observations zyy
where every observation is a ‘no detection’, i.e. z; — Dy.Vk.
Then, it can be shown that the probability the target gets
detected for the first time on time step k, denoted py,
is given by the volume under the surface resulting from
the product of the combined detection likelihood, denoted
[1— p(Dilx,)] = p(Dyix,), with the predicted target PDF.
This is equivalent to the reduction in volume (—AQ}) of
the pseudo PDF as in

P = '/‘p(xuﬁl;hl)’[l —p(ﬁﬂxﬁ)] dx}(
Q-1 — Ok
Assuming no false detection from the sensors, the proba-

bility that the target kas been detected in k steps, denoted
P, is obtained from the cumulative sum of the p;’s as in

1l

(13}

k
Pe=Y.pi=P1+px (14)
: i=1

For this reason F; will be referred to as the ‘cumulative’
probability of detection to distinguish it from the payoff
probability of detection function pi. Notice that plugging
the expressions for py from (13) into (14) gives Fo=1—-0
since Oy = [ p(x])dx}, = 1. This signifies that if the target
PDF is not normalized after each update as in (11), then
its volume, Q, represents the residual probability that the
target is still present despite the search effort expended.
Also, as k goes to infinity, @ decreases towards zero
and P levels off towards one as it becomes harder to
generate additional observation payoff, py, from hardly any
probability mass left in the PDF.

The goal of a searching strategy could be to maximize
the chances of finding the target given a restricted amount
of time by maximizing Py over a given time herizon [8].
For a lookahead depth of N steps as discussed in Sec. III,
the global utility function at time step & is given by the
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probability of detecting the target during the next series of
observations, which corresponds to the net increase in Py

kN

SNy =Y pi=Pen,— Pe
=t

s)

V. APPLICATION

The goal of the ongoing research effort is to demonstrate
the cooperative search framework on a team of hetero-
geneous auteniomous mobile platforms in various outdoor
scenarios. A stepping stone towards this goal is to investi-
gate the problem using simulation. The chosen simulation
scenario involves a team of unmanned air vehicles (UAVs),
such as the ones jllustrated in Fig. 3a, equipped with
downward looking miilimeter wave radars and searching
for a single lost target, a liferaft (Fig. 3b). More about the
implementation details of the framework and the search
problem can be found in [7] and [8].

[(3)
Fig, 3. Scarch scenario: (a) The fleet of Brumby Mark-I]1 developed
ar ACTR. These UAVs have a payload capacity of up to 13.5 kg and
opcrational speed of 50 10 100 knots: (b) Search sensor aperture conc
and geometrical relationship between the search vehicle and the target,

Fig. 4 presents the two vehicles negotiation results for
the algorithm presented in Sec, IIL. The prior target PDF
is a Gaussian density with a standard deviation of 500m
in each direction. Both UAVs are flying at 50 m/s and are
trying to optimize their single control input, the furn rate
in rad/s, for the next 30 seconds. As can be seen from
the iteration results (Figs. 4a and b}, relaxing the Jacobi
algorithm, ie. o4 < 1, often improves the convergence
rate. In this example, there is only one global maximum
(Fig, 4c) and the algorithm is gnaranteed to converge to it.

Fig. 5 illustrates the advantage of a cooperative so-
Intion over a flight formation fiyby or the coordinated
search solution obtained [7]. For the cooperative solution
(Figs. 5a-c), a rolling time horizon of 30 steps, constituted
of 3 conuol parameters, each maintained for 10 steps, is
renegotiated every 10 steps. In the coordinated solution,
each vehicle follows a greedy I-step lookahead solution.
By allowing a more efficient allocation of the search effort,

2o“(‘,t;)
Fig. 4. Two vehicles negotiation: (a) wility convergence comparison of
four versions of the algerithm, Jyy vs. iler. £5 (b) corresponding control
actions convergence, Uy, {rad/s] vs. iter. £; (c) 3D view of the global utility
function; (d) contours of the global utility function and convergence of
the Jucobi and Ganess-Siedel best response (o = 1) algorithms; (e)-(h) 3D
views of the target PDF and vehicle trajectories for iteration steps /=0,1,2
and 17 respectively of the Jacobi best responsc algorithm.

the cooperative approach compares advantageously to both
coordinated (Fig. 5g) and the flight formation (Fig. 5h)
search strategies. In fact after 160s, the time needed for
the formation to traverse the search area, the cooperating
vehicles reach a final P, of Pgyp = .818 vs. Py = .718
for the coordinated solution and Pigg = .575 for the flight
formation, which correspond to an increase of a 13.9% and
42.3% respectively over the later solutions (Fig. 5d).

VI. SUMMARY AND ONGOING WORK

A novel approach to cooperative control based on a
decentralized negotiation algorithm that increases the time
horizon of the decentralized search plans was presented.
On an anonymous basis, decision makers interact to find
cooperative search plans based on both observed and
predicted information that explicitly consider the search
vehicle kinematics, the sensor detection function, as well
as the target arbitrary motion model.

With increased lookahead comes an increase added value
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Fig. 5. Cooperative search for a static larget with 10 vehicles: (a) to
(c} 3D views of the target PDF and the cooperalive trajectories at lime
steps k = 1, 90 and 180s respectively; (d) comparison of the cumulative
probability of detection, B vs, k, for the cooperative. coordinaled and the
straight patern search: (e) coordinated search a1 k= 180s, and (f) straight
paticrn flipht formation search at k = 160s.

in cooperation. This gain in team utility however comes
at the cost of increased communication and computation
loads. The level of attainable optimality of the solution
must therefore be traded-off against the system communi-
cation bandwidth, computing power and available time.

The goal of the negotiation algorithm based on broad-
casted communication as presented in this paper was
to demonstrate the decentralized negotiation principles.
Although such broadecasts communication facilities could
be implemented, for some overhead costs, with spanning-
trees [3], such implementation would not be quite realistic,
In a physical multi-vehicle implementation, the proces-
sors sensor nodes may be far apart and their line-of-
site may be obstructed. Communication delays may be
unpredictable, and the communication links themselves
may be unreliable. Other implementations issues such as
the algorithm termination in an anonymous point-to-point
communication system were also out of the scope. Such
relevant implementation issues will be the subject of a
further publication.

As part of the ongoing research effort, techniques such
as Monte Carlo methods, or particie filters [10], as well as
the so called kernel methods for density estimation [17] are
being investigated to overcome the “curse of dimensional-
ity” limitations of the grid based approach presented. As
well, techniques to facilitate human interactions with the
active sensor network are being investigated to enable an
operator to enter observations in the network and influence
the agents control decisions.
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