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Abslrael-This paper addresses the problem of m r d i -  
nating a team of multiple heterogeneous sensing platforms 
searching for a single lost target. In this approach, the utility 
of a control sequence is a function of the probability density 
function (PDF) of the target slate. Each decision maker builds 
an equivalent atimate of thb PDF by communicating and 
fusing the information from the other sensor nodes. Coupled 
utilities incite the agents to coUahorate and to agree on the 
nehi best set of actions. Decentralized cooperative planning 
Is achieved via anon)-mous negotiation based on communi- 
cation of expected observed infarmation. Simulation results 
demonstrate the efficiency of the cooperative trajeclories for 
a team of autonomous airborne search vehicles. 

1. INTROI)UCTION 
Interconnecting a number of active mobile sensors into a 

network may offer great potential for improved area cover- 
age, robustness and responsiveness. The question remains 
of how to coordinate the sensing platforms effort in an 
optimal manner. 

This paper explores the. issue of optimal control deci- 
sion making from a team perspective. Communication and 
coupled utility between decision makers are considered to 
be the fundamental mechanisms underlying cooperation. 
The focus is on obtaining. in a completely decentralized 
fashion, the optimal cooperative solution that considers the 
effects of everyone's control decisions on the global utility. 
Ref. [ I l l  showed that this type of decentralized active 
sensing problem is equivalent to a distributed computation 
problem [31 as long as the individual decision makers 
have a way of evaluating the effect .of the teammates 
predicted sensing actions on the global utility. For the 
searching problem, the information representation through 
which the individual utilities are coupled is in the form of 
the Probability Density Function (PDF) of the target state 
(71. In the proposed negotiation algorithm, the decision 
makers maintain equivalent estimates of the future PDF. 
They anonymously exchange their expected observation 
likelihoods and iteratively adjust their reactions to the 
teammates previous actions until the best reaction, to the 
previous action, is itself, leading to the Nash equilibrium 
1141 for a given time horizon. This sort of decentralized 
architecture offers increased reactivity, robustness and scal- 
ability by avoiding the overheads, bottlenecks and single 
failure points associated with centralized Smctures. 

The paper is organized as follows. First, Sec. U reviews 
the decentralized Bayesian filtering algorithm that accu- 

rately maintains and updates the information about the 
target state. Then Sec. m formulates the team decision 
problem and introduces the decentralized Bayesian negoti- 
ation algorithm. Sec. IV describes the searching problem. 
Sec. V demonstrates the efficiency of the cooperative 
search strategy for a team of unmanned air vehicles (UAVs) 
searching for a single stationary target. Finally, conclusions 
and ongoing research directions are highlighted. 

11. ACTIVE BAYESIAN SENSOR NETWORK 
This section reviews the decentralized Bayesian frame- 

work introduced in [7] for coordinating the search effort 
of a robotic team. The Bayesian approach is panicularly 
suitable for combining heterogeneous non-Gaussian sensor 
observations with other sources of quantitative and quali- 
tative information [Z], [191. 

A. Decerirrolized Bayesiari Filtering 

In the searching problem the unknown variable of 
interest is the target state vector at time k, denoted x i  E W" 
which in general describes the target location but could 
also include its attitude, velocity, and other properties. In 
this paper the superscripts f and si indicate a relationship 
to rhe target and the sensor i respectively. The subscripts 
are used to indicate the time index. The purpose of the 
analysis is to h d  an estimate for p(x!Izpi), the PDF over 
xk given the sequence zt:k = {z; : i = 1, ..., N,, j = I ,  ... ~ k }  
of all the observations made from the N, sensors on board 
the search vehicles, being the observation from the p h  
sensor at time step j. The analysis starts by determining 
a prior PDF p(xhIzg) E p ( 6 )  for the target state at time 
0, given all available prior information including past 
experience and domain knowledge. If nothing is known 
other than initial bounds on the target state vector, then a 
least informative uniform PDF is used as the prior. Once 
the prior dismbution has been established, the PDF at time 
step k ,  P ( X ; ~ Z ~ : ~ ) ,  can be consmcted recursively using the 
prediction and update equations alternatively. 

I )  Prediction: Suppose the system is at time step k -  
1 and the latest PDF update, ~ ( X ~ - ~ ~ Z ~ : ~ - I ) ,  is available. 
Then the predicted PDF of the target state at time step 
k is obtained from the following Chapman-Kolmogorov 
equation 

p(x~1zi:i-i) = / ~ ( x ~ I x ; _ ~ ) ~ ( x ~ _ , l z ~ : a - ~ ) d x ' ~ _ ~  (1)  
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where p ( x ; l ~ ; _ ~ )  is a probabilistic Markov motion or 
process model which maps the probability of transition 
from a given previous state X L - ~  to a destination state $ 
at time k.  The process model is a function of the equations 
of motion for the target and of the known distribution 
on their inputs. Various examples of process models with 
constraints can be found in [61. 

2) Update: At time step k ,  a new set of observations 
zk = {.;,...,e} becomes available. For each sensor i, 
the mapping of the target state observation probability, 
z' E R"., for each given target state, x i  E R"', is denoted 
p ( z i ( x k )  and will be referred to as the ObseNation like- 
lihood, or sensor model. Assuming all the observations 
to be conditionally independent, the PDF update from the 
prediction stage (I), p(x#l,x-,), is performed using the 
following Bayes rule with the normalization coefficient K, 
also referred to in the literature as the "independent opinion 
pool" 

N, 

i= l  
~ ( X l l z i : x )  = Kp(xLIz~:a-i)np(z:Ix:) (2) 

where the normalization coefficient K is given by 

(3) 

B. Acrive Basesian Sensor Node 
Packaging a physical sensor with its own Bayesian 

filtering processor is an attractive way of making the sensor 
mobile and modular. Such a Bayesian sensor unit can be 
taken anywhere to take measurements about the world. 
Mounting the Bayesian sensor unto an actuated mobile 
Platform and coupling it to its own Controller makes 
it an active Bayesian sensor. Based on the latest belief 
about the world p(x6_,lz1:*-') and the sensor state x L I ,  
the Controller sends a command U:-, to the Platform to 
place the sensor in a desired position with respect 
to the world to take the next observation. hg. 1 depicts 

13~. 1. Cicncnl ~ C L ~ V C  Bayesian sensor node in sful ly  connected ncl'rwork 
with hroadcarl communicalions. 

algorithmically the Bayesian filter and bow it interacts 
with the Controller, the Platform, and the sensor to form 
a node in a fully connected network. To allow point-to- 
point communication between the nodes of the network 
and recovery from transmission failures the node may be 
augmented with an extra filter per communication channel 
called a channel filter [SI. The Platform block represents 
the actuators and dynamics of both the sensor and the 
mobile vehicle, if present, on which the sensor is mounted. 
Any number of sensors can be altacbed to a particular 

fusion node. For simplicity in this paper, each sensor is 
packaged with its own fusion node and controller. 

For the searching problem, the process model, and 
especially the target PDF can be highly non-Gaussian and 
the complete description of the density function must be 
maintained. This prevent the use of parametric implementa- 
tions of the Bayesian filter such as the Kalman filter. In this 
paper the prediction and update equations will be evaluated 
numerically using a grid based discrete approximation of 
the process model, the observation likelihood and the target 
PDF. 

Ill. DECENTKALIZED COOPEKATIVE CONTROI. 
Each of the N, sensor platform is govemed by its own 

(4) 
where dl is the vector representing the process noise and 
the extemal forces acting on the system i, and where U: 
is the corresponding control input vector at time k. The 
controller objective is to produce a command that will place 
the system in a desired state. 

A. Optimal Trajectory 
Optimality is defined in relation to an objective, or utility 

function 1201. For multiple systems, an optimal cooperative 
control solution must the group decision that is jointly op- 
timal. Given Nk lookahead steps, the global utility function 
is denoted J(u,Nk),  where U = U I : N ~  = {u;IN,, ..., u ~ : ~ , }  is 
the control action sequence for all platforms over a time 
horizon of length T = Nk 6t. The optimal control uajectoly 
U* is the sequence that maximizes that utility subject to 
the control bounds u u  2 U 5 UUB and the constraints 
g(U,Nk) 5 0. 

U* = {U;!&, ...;u;"b*} = argmaxJ(u,Nk) (5 )  

To be truly optimal, the trajectory should be evaluated 
for the entire duration of the mission. However, the com- 
putational cost for such optimal plans is subject to the 
"curse of dimensionality". With increasing lookahead depth 
and number of agents, the solution becomes intractable. In 
practice only solutions for a restricted number of lookahead 
steps are possible. One way to increase the lookahead 
without significantly increasing the cost of the solution is 
to have a piecewise constant control sequence (see 1121 
and [9]) where each control parameter is maintained over a 
specified number of time steps. Such control solutions are 
said to be quasi-optimal as they compromise the global 
optimality of the control solution for a lower computa- 
tion cost, but nevertheless, depending on the problem at 
hand and because of their anticipative characteristic, often 
provide better trajectories than the ones computed with 
the same number of control parameters but with shorter 
time horizons. A rolling time horizon solution is when the 
planned trajectory is recomputed at shon intervals to keep 
the lookahead constant as the agents progress forward. At 
time step k. the utility for a given horizon depth of Nk 
steps will be denoted J k ( u - N k )  with U = u ~ ~ + N * - I  being 
the action sequence starting at step k. 

dynamic model in the form 

= q (x;, U;, w;) 

w, 

U 

2682 



E.  Team Utili* Srmucrure 

dual components as in 

the best response to everyone else's best response is fixed. 
In practice, the iterations are stopped when the optimization 
error has decreased under a desired accuracy threshold, i.e. 
when Sd:' = U ? *  - U:: . < E ~ . V ~ .  It is imvortant to notice 

me global utility J~ can be decomposed into its indivi- 

(1 1' (1 - L , 
Ns N, (6) however that such an equilibrium point might constitute, Jk(u,Nk) =CJt '(u.Nk) = ~J;'(uS',iis~,Nk) 

a local maximum of Jk. Notice that the number of local 

strategy P = {u&+Nt-I : j # i). Such situation, where 
a decision maker's likely reward depends on the actions 
of others is called a game. In a game, a decision maker 

rejaxation update equation is used 

+ ac(Uy' U;; = ( 1  - ai)U:i_, +acU;;* (9) 
needs to choose a strategy that maximizes his utility not 
only based on his individual preferences alone, hut on 
the likely actions of the other teammates as well. The 
optimal control sequence U' satisfies the following person- 
by-person oprimliv condition, also referred to as the Nash 
equilibrium solution 1131. That is 

J;'(u*,Nk) 2 J ~ ( n S ~ ~ i i s ~ ' , N k ) ,  VU'? 6 Us',Vi (7) 

where P' = {uLk+NI-I : j # i } .  At equilibrium, an in- 
dividual cannot diverge from Ius Nash strategy without 
decreasing his utility. A game is inherently a distributed 
problem and as such is well suited to be solve by distributed 
computation approaches. 

C. Distribured Compuratinn Solution 
In this section it is proposed to approach the multi- 

vehicle multi-sensor optimization problem (Sj as a dis- 
tributed computation problem [3J. By taking advantage of 
the resources from multiple processors, distributed com- 
putation methods have a significant speed advantage over 
centralized methods. The control problem ( 5 )  is broken 
down into smaller components. At every iteration, each 
processor optimizes its own component and communicate 
the result on the network. The proposed block-iterative 
non-linear algorithm is a coordinate descent type technique. 
It consists in iteratively fixing all the components of U, 

except for the ith block-component and then maximizing 
Jk(u,Nh) = Jk(usJ,iisi, Nk) with respect to us(, and repeating 
for all components until convergence, i.e. until condition 
(7) is satisfied. 

When the maximizations with respect to the different 
components, u"'s, are canied out simultaneously it may 
be referred to as a Jacohi type algorithm. When the maxi- 
mizations are performed sequentially for each component, 
it is referred to as a Gauss-Siedel type alzorithm [3]. 

Each optimization iteration I requires the parallel, or 
sequential, solution of the individual optimization problems 

5 .  

li - - argmax J;' (us; I I ~ Nk) = arg max J ~ ( I I ' ~ , ~ ; - ~ ,  Nx) 
US' 

(8) 
where q;-l corresponds to the information (possibly obso- 
lete) controller i has about the other teammates decisions, 
and U;* is the corresponding best response solution of 
decision maker i at iteration step I .  As such, ( U T ,  E;-,) is a 
pareto-optimal solution. The algorithm bas converged when 

. ,  

where ai €]O, l ]  is the stepping or relaxation parameter 
that specifies the amount by which the solution is moved 
towards the best response. The relaxation parameter may 
vary throughout the negotiation process. For example, 
the algorithm may stan with a value close to one in 
order to converge quickly to a coarse estimate, and then 
progressively decreased towards zero to refine the solution. 
Experience has also shown that a random a, is greatly 
useful to break the symmetries causing the algorithm to 
oscillate. 

Reference [211 introduced a slightly different algorithm 
that exploits this idea of adding a stochastic element 
to the update equation. That algorithm was successfully 
applied in [I 11 to a multi-vehicle control problem for target 
identification. Simulated annealing is another optimization 
technique that uses stochastic updates to get out of local 
maxima. A version of the distributed evolutionary simu- 
lated annealing technique presented in [I] is also currently 
under investigation. 

D. Bayesian Negotiator 
As discussed in the above section, in a standard dis- 

tributed computation approach, after each iteration I the 
controller processor i would need the components from 
the other the controllers q;-l in order to evaluate the 
global utility. This implicitly means that processor i would 
require the knowledge of the other sensors' location or 
characteristics, e.g. observation model and vehicle model, 
and would raise scalability issues. Rather, each controller 
builds an estimate of the future target PDF based on the 
current estimate and the predicted contributions received 
from the teammates. Based on this estimate, an appropriate 
reaction is evaluated. 

Fig. 2 graphically depicts the controller negotiation algo- 
rithm. At a given time step k and iteration I ,  the controller 
i fuses the latest density estimate p(xi lz l ,k)  obtained from 
its fusion node with the predicted observation likelihoods 
p ( ~ ~ + , . ~ + ~ ~ ~ , - ~  1~:)'s associated with the optimized compo- 
nents II~;-~'S from all the other processors j # i computed 
on the previous iteration. Based on the resulting predicted 
density estimate p ( ~ ~ ~ z ~ ~ ~ , ~ ~ + ~ ~ ~ + ~ ~ ~ ~ ~ ~ ) ,  the hest response 
n% is computed and the component U;; is updated. If 
the optimization has not converged, the corresponding 
observation likelihood p(~~+~:~+~,~~Ix!!) is then broadcasted 
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From node i 
4.: I ZLk) 

s&+@ I xi, 

44,,*,y 1.:) 

From all wntollers j ,  

s=;+i,,v ... I.:) 

To all wntrollen j ,  j 

Fig. 2. Bayesian neplialar in a lully eonnccled nelwark with broadcasl 
communiCa,ions. 

to the other controllers for another iteration. Otherwise, 

tion. In this paper the individual optimization problems 
are solved using a constrained non-linear programming 
technique called Sequential Quadratic Programming (SQPj 
1151. 

Notice that the negotiation algorithm as presented above 
is valid only for a stationary target, i.e. there is no process 
or prediction step involved. To take into account the process 
model, instead of being communicated in pre-combined 
blocks as p ( ~ ~ + ~ : ~ + ~ ~ , , ~ ~ / x ‘ ~ ) ’ s ,  Vi, the set of all the pre- 
dicted observation likehhoods from each controller i would 
need to be broadcasted separately, as in {p(zi+n,l-llxL) : 
I I  = 1, ..., Nk}’s ,  Vi,  and stored so they could be fused at the 
right time in the optimization step. This would of course 
increase significantly the communication loads. 

Also, the above iterative algorithm can be executed 
asynchronously. As discussed in [4], in an asynchronous 
implementation, the processors are allowed to iterate at 
their own pace on their respective component and are not 
required to wait to receive all messages generated during 
the previous iteration. If the latest predicted observation 
likelihood updated by some other processor is not available, 
then some outdated likelihood is used instead. Evidences 
suggest that asynchronous iterations converge faster than 
their synchronous counterparts [4]. The details of an asyn- 
chronous implementation of the above Jacobi algorithm 
robust to communication delays and transmission failures 
with point-to-point communication is out of the scope of 
this paper and will be the subject of an ulterior publication. 

IV. THE SEARCH PROBLEM 
This section describes the equations for computing the 

probability of detection of a lost object referred to as 
the target by using the outputs of the prediction and 
update equations from Sec. D-A. An equivalent but dif- 
ferent derivation is presented in [7]. Funher details on 
the searching problem can also be found in 1181 and [I61 
(Chap.9). 

Let the target detection likelihood (observation model) 
of the ith sensor at time step k be given by p(zk = Diix;) 
where Di represents a ‘detection’ event by sensor i at time 
k. The likelihood of ‘no detection’ by the same sensor 
is given by its complement p(Bklx i )  = 1 -p(DLlx;). The 

~ 7 n:+l+I:k+Nt is sent to the Platform for execu- 

combined ‘no detection’ likelihood for all the sensors at 
time step k is simply a multiplication of the individual ’no 
detection’ likelihoods 

where Dk = n ._. nD2 represents the event of a ‘no 
detection’ observation by every sensor at time step k. Ne- 
glecting the normalization factor K in the update equation 
(2) gives 

4 
P(x‘klzl:k)‘=P(xfxlzl:k-l)’nP(Z/lX~) (11) 

i= I 

The advantage of not normalizing the target PDF at every 
update is that the joint probability of failing to detect the 
target in all of the steps from 1 to k ,  denoted Qk = p(DI:k), 
can be directly obtained from the integration of the pseudo 
PDF update (1 1 j 

Qk = /P(@I:kfdXb = /p(x‘klDi:r~i)lp(~kIx~)dx‘~ 

where Dl:k corresponds to the set of observations z Iyk  
where every observation is a ‘no detection’, i.e. zk = &Vk. 
Then, it can be shown that the probability the target gets 
detected for the first time on time step k, denoted pk, 
is given by the volume under the surface resulting from 
the product of the combined detection likelihood, denoted 
[l -p(Dklx:)]  =p(D&). with the predicted target PDF. 
This is equivalent to the reduction in volume (-AQk) of 
the pseudo PDF as in 

112) 

Pk = / p ( x ~ \ D l : k - l ~ [ 1  -p(DkIx;)] dx; 

= Qk-i -Qk (13) 

Assuming no false detection from the sensors, the proba- 
bility that the target has been detected in k steps, denoted 
Pk, is obtained from the cumulative sum of the pk’s as in 

(14) 

For this reason Pk will be referred to as the ’cumulative’ 
probability of detection to distinguish it from the payoff 
probability of detection function p k .  Notice that plugging 
the expressions for pk from (13) into (14) gives Pi = 1 - Qk 

since Qo = Jp(xb)d% = 1. ‘Ibis signifies that if the target 
PDF is not normalized after each update as in ( l l ) ,  then 
its volume, Qk, represents the residual probability that the 
target is still present despite the search effort expended. 
Also, as k goes to infinity, Qk decreases towards zero 
and Pk levels off towards one as it becomes harder to 
generate additional observation payoff. pk,  from hardly any 
probability mass left in the PDF. 

The goal of a searching strategy could be to maximize 
the chances of finding the target given a restricted amount 
of time by maximizing Pk over a given time horizon [SI. 
For a lookahead depth of Nk steps as discussed in Sec. I l l ,  
the global utility function at time step k is given by the 



probability of detecting the target during the next series of 
observations, which corresponds to the net increase in Pk. 

k+Nt 

i=P 
Jk(u,Nk)= P i = p k + N k - p k  (15) 

V. APPLICATION 

The goal of the ongoing research effort i s  to demonstrate 
the cooperative search framework on a team of hetem- 
geneous autonomous mobile platforms in various outdoor 
scenarios. A stepping stone towards this goal is to investi- 
gate the problem using simulation. The chosen simulation 
scenario involves a team of unmanned air vehicles (UAVs), 
such as the ones illustrated in Fig. 3a, equipped with 
downward looking millimeter wave radars and searching 
for a single lost target, a liferaft (Fig. 3h). More about the 
implementation details of the kamework and the search 
nrohlem can be found in I71 and 181. 

Fig. 3. Search scenario: (a) Ihc fleet of Brumhy Mark-111 dcvcloped 
ai ACm. Thcso UAVs have a payload capacity or up to 13.5 kg and 
opcra~iond s p d  of SO IO IW knots: (h) Semh sensor apcnure cone 
and gcomctncal n.lalionship between Ihc search vehicic and thc target. 

Fig. 4 presents the two vehicles negotiation results for 
the algorithm presented in Sec. lII. The prior target PDF 
is a Gaussian density with a standard deviation of 500111 
in each direction. Both UAVs are flying at 50 m/s and are 
hying to optimize their single control input, the hlm rate 
in radk, for the next 30 seconds. As can be seen from 
the iteration results (Figs. 4a and b), relaxing the Jucobi 
algorithm, i.e. cq < 1 ,  often improves the convergence 
rate. In this example, there is only one global maximum 
(Fig. 4c) and the algorithm is guaranteed to converge to it. 

Fig. 5 illustrates the advantage of a cooperative so- 
lution over a Right formation flyby or the coordinated 
search solution obtained 171. For the cooperative solution 
(Figs. 5a-c), a rolling time horizon of 30 steps, constituted 
of 3 control parameters, each maintained for 10 steps, is 
renegotiated every 10 steps. In the coordinated solution, 
each vehicle follows a greedy I-step lookahead solution. 
By allowing a more efficient allocation of the search effort, 

Fig. 4. Two vehicles negotiation: (a) utility convagcnce eompaTi~on 01 
four v ~ n i o n ~  of thc algorithm, Jtl,,vs. iter. I ;  (h) comrponding comr0I 
actions convergenec. ukli [radis] YS. ~ I C L  1; (c) 3D view afthe plohal utility 
function; (d) cantoun of the global ulility funclion and conveqcncc of 
lhe Joobi  and Go~rrs-Siedel hest response (U, = 1) alporilhms; (e)~(h) 3D 
vicws of the W c t  PDF and vehicle irdjcctories for iicralim slep~ l=O.I.Z 
and 17 respeelivcly of lhc Jarobi hest rcsponsc algorithm. 

the cooperative approach compares advantageously to both 
coordinated (Fig. 58) and the flight formation (Fig. 5h) 
search strategies. In fact after 160s. the time needed for 
the formation to traverse the search area, the cooperating 
vehicles reach a final Pk of f i m  = ,818 vs. P I ~ O  = ,718 
for the coordinated solution and P I ~ O  = ,575 for the flight 
formation, which correspond to an increase of a 13.9% and 
42.3% respectively over the later solutions (Fig. 5d). 

VI. SUMMARY AND ONGOING WORK 

A novel approach to cooperative control based on a 
decentralized negotiation algorithm that increases the time 
horizon of the decentralized search plans was presented. 
On an anonymous basis, decision makers interact to find 
cooperative search plans based on both observed and 
predicted information that explicitly consider the search 
vehicle kinematics, the sensor detection function, as well 
as the target arbitrary motion model. 

With increased lookahead comes an increase added value 
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in cooperation. This gain in team utility however comes 
at the cost of increased communication and computation 
loads. The level of anainable optimality of the solution 
must therefore be traded-off against the system communi- 
cation bandwidth, computing power and available time. 

The goal of the negotiation algorithm based on broad- 
casted communication as presented in this paper was 
to demonstrate the decentralized negotiation principles. 
Although such broadcasts communication facilities could 
he implemented, for some overhead costs, with spanning- 
frees [3], such implementation would not he quite realistic. 
In a physical multi-vehicle implementation, the proces- 
sors sensor nodes may he far apan and their line-of- 
site may be obstructed. Communication delays may be 
unpredictable, and the communication links themselves 
may he unreliable. Other implementations issues such as 
the algorithm termination in an anonymous point-to-point 
communication system were also out of the scope. Such 
relevant implementation issues will be the subject of a 
further publication. 

As part of the ongoing research effort, techniques such 
as Monte Carlo methods, or particle filters [IO], as well as 
the so called kernel methods for density estimation [I71 are 
being investigated to overcome the "curse of dimensional- 
ity" limitations of the grid based approach presented. As 
well, techniques to facilitate human interactions with the 
active sensor network are being investigated to enable an 
operator to enter observations in the network and influence 
the agents control decisions. 
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