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Absfrocl-This paper describes a decentralized Bayesian ap- 
pmach to coordinating multiple autonomous sensor platforms search- 
ing for B single non-evading target. In this architecture, each decision 
maker builds an equivalent representation of the target state PDF 
through a Bayesian DDF network enabling them to coordinate their 
actions without exchanging any information about their plans. The 
advantage ofthe appmach Is that a high degree of scalability and real 
time adaptability can be achieved. The effectiveness of the approach is 
demonstrated in different scenarios by implementing the framework 
for a team of airborne search vehicles looking for a stationary, and 
a drifting target lost at sea. 

I. INTRODUCTION 
"Yachl Criimlkin capsized in position thiriy miles nom-west of 

Lands End..."' 
When rescue authorities receive a distress signal time be- 

comes critical. Survival expectancy decreases rapidly when 
lost at sea and a rescue mission's primary goal is to search 
for and find the castaways as diligently and efficiently as 
possible. The search, based on some coarse estimate of the 
target location, must often be performed in low visibility 
conditions and despite strong winds and high seas causing 
the location estimate to grow even more uncertain as time 
goes by. Keeping these time and physical constraints in 
mind, and given a large team of heterogeneous platforms 
such as high flying long range aircrafts, helicopters and 
ships equipped with different sensors, what should be the 
optimal search strategy? 

This paper presents a decentralized Bayesian approach 
to the target detection problem as described in [8] (Chapter 
9). It expands the single vehicle framework proposed in [2] 
to an arbitrary number of sensing platforms by integrating 
a fully decentralized Bayesian data fusion (DDF) technique 
with a decentralized coordinated control scheme that was 
first proposed by Grocholsky [6]. Scalability, modularity 
and real-time adaptability are the advantages of the decen- 
tralized approach. At any time, new rescue vehicles can 
join, or momentarily quit for refuelling, the search effort 
and the system should seemly and robustly adapt to the 
change. 

The breakdown of the paper is as follows. Firstly, the 
decentralized Bayesian filtering algorithm that accurately 
maintains and updates the target state probability distri- 
bution is described in the next section. Then section III 
describes the searching problem, and section IV describes 
the utility function selected and formulates the decentral- 
ized control optimization problem. Then, in section V the 
effectiveness of the approach is demonstrated for multiple 

'Coastguard broadcast during the desastrous 1979 Farmet yacht race. 
August 14, 1979 191 

airborne search vehicles in three different scenarios for sta- 
tionary, and drifting targets, and in one instance, the optimal 
cooperative solution is compared with the coordinated one. 
Finally, conclusions and ongoing research directions are 
highlighted in the last section. 

11. BAYESIAN FILTERING 
This section presents the mathematical foundations of 

the Bayesian decentralized data fusion algorithm that keeps 
track of the target state PDF. The Bayesian approach is 
panicularily suitable for combining in a rational manner 
heterogeneous non-gaussian sensor observations with other 
sources of quantitative and qualitative information [11][1]. 

In Bayesian analysis any quantity that is not known 
is considered a random variable. The state of knowledge 
about such a random variable is expressed in the form of 
a probability density function (PDF). Any new information 
in the form of a probabilistic observation is combined with 
the previous PDF using the Baye's theorem in order to 
update the state of knowledge and form the new a posteriori 
PDF. That PDF forms the quantitative basis on which all 
inferences, or control decisions (Sec.N) are made. 

In the searching problem, the unknown variable is the 
target state vector x' E E' which in general describes the 
target location but could also include its attitude, velocity, 
etc. The analysis starts by determining the a priori PDF 
of x', p(xblzo) p(So), which combines all available in- 
formation including past experience. For example, this a 
priori PDF could be in the form a gaussian distribution 
representing the prior coarse estimate of the parameter 
of interest. If noting but the bounds is known about the 
parameter, the least biased approach is to represent this 
knowledge by a uniform PDF over the bounded region 
of the space. Then, once the prior distribution has been 
established, the PDF of the target state at time step k, 
p ( x i 1 ~ ~ : ~ ) ;  can be constructed recursively, provided the 
sequence z , . ~  = {zi : i = 1 ,..., N9, j = 1 ,..., k} of all the 
observations made from the NI sensors on board the search 
vehicles, z; being the observation from the if* sensor at 
time step j. This recursive estimation is performed in two 
stages: prediction and update. 
A. Prediction 

A prediction stage is necessary in Bayesian analysis 
when the PDF of the state to be evaluated is evolving with 
time i.e. the target is in motion or the uncertainty about 
its location is increasing. Suppose we are at time step k - 1 
and the latest PDF update, p(xf,-llzl,k-,) is available. Then 
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the predicted target state PDF at time step k is obtained by 
the following Chapman-Kolmogorov equation 

P(x‘alz l :k- l )  = /P($~$-I )P($-I Izi:k-i Y4-i (1) 

where p ( ~ i l $ - ~ )  is a probabilistic Markov motion model. 
If the motion model is invariant over the target states, then 
the above integral is simply a convolution. Practically, this 
convolution is performed numerically by a discretization of 
the two PDF‘s on a grid, followed by the multiplication of 
their Fast Fourier Transforms (FFT)’s, and an inverse FIT 
of the produce to retrieve the result. 
B. Update 

At time step k a new set of observations zk = {zl, ...,?} 
becomes available and the update is performed using the 
Bayes rule where all the observations are assumed to be 
independent. In other words, the update is performed by 
multiplying the prior PDF (posterior from the prediction 
stage) by all the individual conditional observation likeli- 
hoods p(zi l<)  as in the following 

N, 

$=I  
P ( x i / z l : k )  = K p ( x ; l z l : k ~ l ) ~ ~ ( z : / x ~ )  (2) 

where the normalization coefficient K is given by 

Practically, the multiplication of equation 2’is performed 
numerically by multiplying together the corresponding el- 
ements of a grid. 
C. Buyesiun DDF 

In an information gathering task such as searching, if 
each sensor is connected to a processing unit called a 
node, then it is possible through communication and fusion 
of the information to reconsmct at each node the global 
information state of the world, e.g. the target state PDF. 
Figure 1 depicts bow the update and prediction equations 
are integrated in the Bayesian DDF node of fully connected 
network. 

Sensor Node I 

Fig. 1. Bayesian DDF node of a fully connected network. 

111. THE SEARCHING PROBLEM 
This section describes the equations for computing the 

probability of detection of a lost object referred to as the 
target. For further details on the searching problem see [IO] 
and [SI. 

If the target detection liikelihood (observation model) 
from the p h  sensor at time step k is given by p(z;l<) where 

z; = 4. and Dk represents a “detection” event by sensor 
i at tk,  then the likelihood of “no detection” by the same 
sensor is given by its complement p(DL[<) = 1 -p(Dil$). 

The combined ‘no detection’ likelihood for all the sen- 
sors at time step k is simply a multiplication of the 
individual no detection likelihoods 

(4) 

where Dk = n... n$’ represents the event of a ‘no 
detection’ observation by every sensor at time step k. 

At time step k, given all the previous observations zl:k-l, 
the conditional probability of a combined ‘no detection’ 
event (zk = Bk) to occur, noted p(Dklz l :k- l )  = qk, depends 
on how the combined ‘no detection’ likelihood (Q.4). and 
the latest target PDF (from the prediction stage 1) overlap. 
In fact, qk is given by the reduced volume (i.e. < 1) of the 
target PDF after having been carved out (multiplied) by the 
‘no detection’ likelihood in the update stage equation (Fq. 
2) and before applying the normalization coefficient K to 
it. 

P ( D k l Z ] : k - l )  = /~(D~~x~)~(%~zl:k-l )dx6 = 4 k  (5 )  

Notice that qk is exactly the inverse of the normalization 
factor K for a ‘no detection’ event (i.e. qk = I / K  for zk = Dk 
in equation 3), and is always smaller than 1.  

Hence, if qk represents the conditional probability of 
failing to detect the target for a specific observation step, 
then the joint probability of failing to detect the target in, 
all of the steps from 1 to k, noted Qk = p(DIzk), is obtained 
by the product of all the qk’s as follows 

where Dl:i-l is the set zl:i-l of observations where every 
observation is ’no detection’ (ni,Vi). From the above it can 
be deduced that the probability that the target has gotten 
detected in k steps, noted Pk. is given by Pk = 1 - Q,. 

Another way of obtaining Pk is to first compute p k ,  the 
probability that the target gets detected for the fist time on 
time step k as follows 

(7) 

Assuming no false detection from the sensors, the proba- 
bility of detection Pa is given by the cumulative sum of the 
Pk’S k 

p k = ~ P i = p k - I + p k  (8) 
i= I 

For this reason we will refer to Pk as the ‘cumulative’ prob- 
ability of detection to distinguish it from the conditional 
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probability of detection at time k which is equal to 1 - qk. 
Notice that as k goes to infinity, Pk increases towards one. 
With k increasing, the added probability of detection pk 
gets smaller and smaller as the conditional probability of 
detection (1 - q k )  in Eq. 7 gets discounted by a continuously 
decreasing Qk-, . 

The mean time to detection (MlTD) is the expectation 
of the number of steps required to detect the target 

(9) 

To summarize. the goal of a searching strategy could either 
be to maximize the chances of finding the target given 
a restricted amount of time by maximizing Pk over the 
time horizon, or to minimize the expected time to find 
the target by minimizing the MTTD. The difficulty though 
in evaluating the MTTD lies in the fact that one must in 
theory evaluate pk for all k‘s up to infinity. Although in 
practice MlTD could be evaluated approximatively over a 
sufficiently long interval (i.e. Pk must be close to 1). 

IV. PLANNING 
A. Optimal Trojectory 

Optimality is always defined in relation to an objective, or 
utility function [12]. For a multiple sensor platforms control 
solution to be optimal (i.e. cooperative), it must be the 
negotiated jointly optimal group decision. For the searching 
problem there are two suitable candidates to evaluate a 
trajectory utility, namely the the MTTD (Eq. 9), and the 
cumulative probability of detection Pk (Eq. 8). In this paper, 
the later objective function is used. 

Hence, for an action sequence U = {ul, ... U } over a 
time horizon of length T = Nkdt ,  we have the following 
utility function 

’k 

k+Nt 

i=k 
J(Qq) = P ,  = PktN, - Pk (10) 

where U is a Ns x Nk matrix where N, and Nk are the number 
of sensorslvebicles and the number of lookahead steps 
respectively. The optimal control strategy U* is the sequence 
that maximizes that utility subject to uLB 5 U 5 uuB. 

U* ={U;, ..., U;} =argmaxJ(ulNk) (11) 
U 

For the searching problem, because early actions strongly 
influence the utility of subsequent actions, the longer the 
time horizon, the more likely the computed trajectory is 
to be globally optimal. However, the computational cost 
follows the “curse of dimensionality” and with increas- 
ing lookahead depth becomes intractable. In practice only 
solutions for very restricted number of lookahead steps 
are possible. One way to increase the lookahead without 
increasing the cost of the solution too much is to have a 
piecewise constant (see [7] and [3]) control sequence where 
each control parameters is maintained over a specified num- 
ber of time steps, and to recompute the planned trajectory 

at short intervals. Such control solutions are said to be 
‘quasi-optimal‘ as they compromise the global optimality 
of the control solution for a lower computation cost, but 
nevertheless, depending on the problem at hand, often 
provide better trajectories than the ones computed with the 
same number of control parameters but with shorter time 
horizons. 
B. Coordinated Planning 

A coordinated is different than a cooperative control solu- 
tion, In a coordinated control architecture, decision makers 
plan individually based on their cunent knowledge of the 
world (e.g. target state PDF) and only exchange observed 
information via the DDF network which ensures that each 
platform share a common global image of the world 161. 
There is no mechanism to reach a negotiated outcome, but 
the information exchanged between the decision makers 
influence each others subsequent decisions by altering the 
prior on which these local decisions are made. Hence 
coordinated trajectories are realized simply by activating a 
DDF network with independent control laws implemented 
internally at each sensorlvehicle node (fig.1). 

Coordinated solutions are suboptimal, but they have the 
advantage of being completely decentralized. As such, 
because the individual planning computation costs do not 
increase with the number of platforms, they offer tremen- 
dous scalability potential limited only by the communica- 
tion medium. Although it can be implemented for longer 
lookahead, the simplest form of coordinated control is 
for one-step lookahead. As will be demonstrated in the 
results section (Sec. V-B), this greedy form of coordinated 
searching strategy provides very sensible control solutions 
at very low computationai costs. 

V. APPLICATION 
Ultimately, the goal of the ongoing research effort is to 

demonstrate the autonomous search framework on ACFR‘s 
fleet of unmanned air vehicles (UAV’s) (fig. 2a). A stepping 
stone towards this goal is to use ACFR‘s high fidelity 
simulator (fig. 2b) of the UAV’s hardware, complete with 
different sensor models, and DDF communication proto- 
cols, on which the Aight software can be tested before 
being implemented on board the platform almost without 
any modifications [41. 

The rest of this section describes the implementation of 
the coordinated Bayesian searching framework for a single 
lost target that could either he stationary or mobile by 
multiple airborne vehicles. However, the method is readily 
applicable to searching problems of all kinds, let it be 
on land, underwater or airhorne search for bushfires, lost 
hikers, enemy troops in the battlefield, or prospection for 
ore and oil, or even to search for water or evidence of life 
on another planet. 
A. Pmblem description 

The problem chosen for the illustration of the frame- 
work involves the search for a life-raft lost at sea by a 
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with a standard deviation of 500111, and except for the 
heterogeneous case, the searching vehicles are all flying 
at an altitude of 250m. 

1 )  Srurionary Targer: Figure 3 shows the resulting coor- 
dinated ‘greedy’ (I-step lookahead) search trajectories for 
2 vehicles and the corresponding 3D views of the target 
PDF evolution at different stages as the search progresses 
from 0 to 180 seconds. The fact that each vehicle build an 
equivalent representation of the target state PDF through 
DDF enables them to coordinate their actions without 
exchanging any information about their plans. Although 
this solution is very cheap computationally, it produces 
efficient plans that correspond to maximizing locally the 
individual payoff gradients. However because of the myopic 
planning, the vehicles fail to detect higher payoff values 
outside their sensor range. Figure 3e displays in solid line 

Fig. 2. (a) The fleet of Bmmby Mark-ill uav’s been developed at ACFR as 
part of the ANSER project. These Right vehicles have a payload capacily 
of up to 13.5 kg and operational speed of 50 to 100 knots. (b) Display of 
the high fidelity multi-UAV simulator. 

group of N, airborne sensor platform i = 1, ...: Ns equipped 
with GPS receivers (assuming perfect localization), and 
a searching sensor (downward looking millimeter wave 
radar) that can be modelled by likelihood functions (over 
range and bearing) hence relating the control actions to the 
probability of finding the target. Each vehicle is moving in 
the xy plane at constant velocity Vi where the single control 
parameter U: is the heading rate and is maintained over 
the time interval dt. The maximum heading rate amplitude 
(U- = i1.1607 rad/s) corresponds to a 6g acceleration, 
the UAV’s manoeuvre limit at V = 50 d s  ( 100 knots). 
There is one observation (full scan) made once every second 
by each sensor. The sensors are assumed to have perfect 
discrimination i.e. no false target detection. However, they 
may fail to call a detection when the mget is present i.e. 
miss contact. The onmibearing sensors’ maximum range 
( 400m) is much smaller than the size of the searching area 
(2km x 2km). Drift current and winds (of up to 30 knots) 
affect the target distribution over time in a probabilistic way 
through the process model. The target PDF is of general 
form and is evaluated and maintained on a discrete grid. 
As the length of the search is limited by the vehicles 
fuel autonomy, the search objective consists in maximizing 
the cumulative probability of finding the target in a fixed 

(e) 
Fig. 3. Coordinated greedy search for a smic target: (a) 3D view of lhe 
prior (Gaussian) target distribution and the platform locations (time tr = 
IO). (b) to (d) Views of the platform aajectories and the updated target 
pdf at time tr = 30. 60 and 180 respectively. (e)  Conditional (solid line) 
and ‘discounted‘ (dashed dotted line) probability of detecting the target on 
time step k (p(Dklz,,,) = 1 -qk,  and pr = Qr( l  - 6)). and (0 cumulative 
probability prohahilily of detection Pr for the coordinated (solid line). and 
CwDerative (dashed line) I-steD solutions. 

amount of time(Eq.10). 
For details of the vehicles and the target motion models, 

as well as the sensors detection likelihood,the readers are 
referred to [2]. 
E. Results 

For all the results presented in this section, except the 
last example, the initial target PDF is assumed to he a 
symmetric Gaussian distribution centered at the origine 

- 

the conditional probability of detection (1 - qk) obtained at 
every time step fk. The dashed line represents the actual 
probability that the target gets detected on that time step 
which is the same as the solid line, hut discounted by Qk-, 
which corresponds to the payoff function pk. The peaks 
in both functions are happening when the search vehicles 
flyby over high probability regions in the target PDF. 
Figure 3f shows the ‘cumulative’ probability Pk that the the 
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target as been detected by time step fa for the coordinated 
superimposed with the cooperative solution. This along with 
the computed trajectories (not shown) confirms that for very 
short lookahead depths, both solutions are very similar, 
Another phenomenon to notice about the greedy search is 
the fact that because the volume under the PDF is always 
equal to one, as the vehicles traverse a mode of the function 
(e.g. when they both converge to the original PDF mode for 
the first time (figure 3a), it has the effect of pushing away 
the probability mass hence increasing the entropy of the 
distribution, consequently making it harder and harder to 
increase the utility as time passes. The phenomenon will be 
referred to as the scattering effect. Intuitively, for a given 
.10/ . . . . . . . . .  

order to compare the cumulative probabilities for the same 
number of observations, the Pk’s of the single vehicle are 
actually the results of 120s long plans displayed on the 
60s long graph. Hence one can see that when the optimal 
trajectories are computed, two vehicles are performing 
about twice as fast as one vehicle, but with a very small 
loss in efficiency due to interference. For the ‘greedy’ (1- 
step lookahead) case the coordinated solution is also very 
similar to the single vehicle case, but is not necessarily 
worse than a single vehicle going twice as fast. 

2)  Drifring Target - Heterogeneous Vehicles: This sec- 
tion demonstrates the method for heterogeneous vehicles 
searching for a drifting target. A slower vehicle (V2 = 
40ds) .  flvine at an altitude of 600m is teamine with . . .  L I 

two faster vehicles = 5 5 d s )  flying at lower altitude 
(250111). Because vehicle number 2 is flying higher, it has a 
lower resolution (i.e. lower detection likelihood), but it has 
a larger field of view (800111 vs 4001x1 of ground radius). 
The optimization technique is the same used as for the 
static target, but the computational costs are increased by 
a few fold as the convolution ooeration needed for the 

. . . . . . . .  
. . . . . . . .  . . .  . . . .  target prediction stage is a costly operation. This is also . . . . .  . . . . .  : I%.. 

..: 

Fig. 4. Trajectory optimization: (a) Quasi-optimal cwperative trajectories 
for a 60s s m c h  (6 control parameters per trajectory maintained for 10s 
each), and (h) comparison between PE evolution (top). and control selec- 
tions u(k)’s  (bottom) for the coordinated Is loohhead (geedy) solution 
(solid line), and the 6 parameters piecewise constant solution (dashed 
line). (cj and (dj Greedy and quasi-optimal trajectories (12 parameten) 
respectively for 1 vehicle over 120s. The corresponding Pk’s compressed 
on 6% are the dotted lines shown in (b). 

fixed trajectory length one could imagine that, instead of 
rushing to the PDF‘s peak as in the greedy solution, the 
optimal strategy would be to circle around the peak hut 
without flying over it, in such a manner as to plow the 
probability mass towards the peak, effectively concentrating 
it (reducing the entropy), in order to increase the payoff of 
the last observations. In fact, as shown on figure 4% this 

compounded by the fact that because the target PDF is 
moving, a larger grid is necessary, making it even more 
costly to perform the convolution and the optimization. 
Nevertheless, the coordinated greedy solution is still very 
effective. The 3D plots of the search evolution are shown 

....... : ......... :.../ ..... 
. .  ........................... ~: 

...................... . ~ ~ ~ ~ .  1~ y............... :..I 
- 

is exactly what happen. The piecewise constant cooperative 
‘optimal’ control solution with 6 parameters per trajectory, 
for a 60s plan, shows the paths spiraling in instead of 
spiraling out. The comparison between the utility function 
evolution (figure 4b) shows what one would anticipate. The 
greedy solution first gets a head start as each vehicle go 
straight to the peak to finish with Pm = ,673, but the ‘quasi- 
optimal’ solution progresses steadily to ultimately finish 
with P6,, = ,757, a 12.5% increase. 

Also shown in figure 4b are the single vehicle ‘greedy’ 
and ‘quasi-optimal’ Pk’s (dotted lines) for which the corre- 
sponding trajectories are illustrated in figure 4c and d. In 

. .  

(C) (d) 
Fig. 5. Cwrdinated (Is Iwkahead) search for a drifting mget with 3 
heterogeneous vehicles: (a) to (c) 3D views of the searching vehicles tra- 
jectories and updated larget PDF at time it = 30. 90. and 150 respectively. 
and (dj Cumulative probability of detection Pw 

on figure 5. Once again, the coordinated solution shows 
quite reasonable trajectories terminating with PISO = 95.5% 
(figure 5d). 

3) Scalabiliry: In this example the real strength of the 
coordinated control strategy is demonstrated for 10 vehicles 
searching for a stationary target without increasing the com- 
putation cost at each node. Figure 6 illustrates the evolution 
of the coordinated trajectories. By allowing a more efficient 
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1.1 I . ,  

Fig 6 CuorJinlted >each lor 3 stalk target uith 10 whiclcr.lr! tu (di  
?U V I C U ~  of ihe wrgut PDF and thc iumdmtcd trdjectoncs e\ulution at 
time r, I I. M. I20 and 180, rr.\pccti\ely. (c) Suaiphi pnuem rearch at 
I& = IMls, and 10 P, for lhe cmrdmnled lrolid line) \ S .  the Right fonauun 
tda-hcd line! \r.srch 

allocation of the search effon. the coordinated approach 
compares ad\,antageously to the simple scanning search 
strategy shown on figure 6e which is someu,har reminiscent 
of current searching strategies followed by coastguards and 
Navies. In fact after 160s. the time needed for the formation 
to traverse the searching ared. Pk reaches a value of only 
PIMI - ,515 \ s .  PI, = ,718 for the coordinated solution, a 
24.94 increse (fig. 60. 

vi. SCMMARY A N D  OUGOING WORK 
This paper addreswd the pmblem of coordinating multi- 

ple poshibly heterogeneous scnsing platforms performing a 
search mission for a single target in a dynamic environment. 
The general deceiitralized Hayesian frameuork presented 
explicitly considers the search vehicles kinematics. the sen- 
sors detection function, well as the tuget arhitrruy mo- 
tion model It u'as demonmated to adaptively find efficient 
coordinated search plans in a completely decentraliied way. 
A major appeal of the approach is that nodal computation 
costs cue kept constant regardless of their number thus 
offering 3 high potential for scalability. 

Because of the nature of the search problem, it  is quite 
important to accurately keep track of the very non-Gaussian 
large1 statc PDF. However. any grid based approach such 
as the one presented is inlrin\ically subject 10 the "curse 

of dimensionality", and as smn as one needs to increase 
the search area, the resolution of the grid, or the number 
of dimensions in the state-space, computational costs tend 
to get out of hand. As part of the ongoing research effort, 
techniques such as Monte Carlo methods, or particle filters 
[51, as well as the so called kernel methods are being 
investigated to overcome the computational limitations. 

Another limitation of the technique as presented comes 
from the assumption that every DDF node transmits and 
receives every single observation without a miss via broad- 
casting. Beyond the obvious bandwidth limitations, such 
assumptions are not quite practical in real life since com- 
munication systems are plagued by delays and intermittent 
transmissions. To overcome this problem, work in progress 
also involves developing a channel filter to allow the 
Bayesian DDF network to be tree connected and hence 
reduce drastically the communication loads that are in- 
curred in a fully connected network, as well as allowing 
intermittent burst communications. 

Beyond the demonstration of the approach on a team 
of UAV's, the ultimate objective of this research is to 
eventually have multiple platforms participating in actual 
search and rescue (SAR) missions with real-time coop- 
erative planning and fully integrated human in the loop 
inputs. As shown by the results presented, the technique as 
the potential to greatly improve on current S A R  protocols, 
which in turn could be critical in saving human lives. 
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