
Multimodal Operator Decision Models

Nisar Ahmed and Mark Campbell

Sibley School of Mechanical and Aerospace Engineering

Cornell University, Ithaca, NY 14853, USA

{nra6,mc288}@cornell.edu

Abstract— This paper develops the multimodal softmax
(MMS) model, a probability distribution for multimodal dis-
crete random variables with continuous conditioning random
variables. MMS is motivated by the problem of learning
multimodal probabilities for categorical human decisions in
Bayes Net models of semi-autonomous systems. The MMS
model is then derived vis-a-vis softmax and softmax mixture
distribution models. MMS training is discussed in the context
of maximum likelihood estimation. Finally, decision classifica-
tion results using experimental data from Cornell’s RoboFlag
human-robotic interaction testbed are presented.

I. INTRODUCTION

Joint human-autonomous vehicle teams are envisioned

for many applications, such as search and rescue, forest

fire-fighting, planetary exploration, agriculture, and security.

Human operators are unique elements of these teams because

they provide critical strategic input under many uncertainties.

Probabilistic models of these teams can be used to improve

coordination between multiple robots and humans. Recent re-

search in human-robotic interaction has fused methods from

cognitive engineering [6], control systems and estimation

theory [13]. Ref. [3] proposed human decision models via

Bayesian Networks/Dynamic Belief Networks (BNs/DBNs);

these are combined with vehicle models to form a com-

prehensive joint human-vehicle modeling methodology [1].

This approach models humans and autonomous vehicles in

a unified probabilistic framework, thus naturally connecting

human decision-making with control and estimation theory.

Accurate probabilistic human decision models will enable

both accurate prediction of operator decisions given sensor

measurements and vehicle trajectories, and accurate estima-

tion of hidden state variables via known operator decisions.

In the BN/DBN framework, categorical human decisions

(e.g. goals, strategies, robot type selections, rooms to search,

etc.) are modeled as discrete random variables. The ‘parent

random variables’ influencing them can be a mix of discrete

(e.g. target identity) and continuous (e.g. command trajec-

tory) variables. ‘Discrete parent-discrete child’ dependencies

are easily modeled with probability tables [7]. However,

‘continuous parent-discrete child’ dependencies pose certain

difficulties [2], [7], [9]. While softmax and mixture of

softmax models are tractable for BN inference [9], [12], they

either fail to learn multimodalities in training data or are

inefficient at learning such features.

This work was supported by AFOSR, contract number FA9550-05-1-
0118.

X
1

X
2

X
3

D

C

D {Track Target, ID Target}�

X2 {UAV, Car}�

P(‘Track Target’| X1, X2 = UAV)

X1

X1 = Target Position

1

0

X
1

X
2

X
3

D

C

D {Track Target, ID Target}�D {Track Target, ID Target}�

X2 {UAV, Car}�X2 {UAV, Car}�

P(‘Track Target’| X1, X2 = UAV)

X1

X1 = Target Position

1

0

Fig. 1. BN model of an operator tasking a pair of robot vehicles. The
inserted plot shows a multimodal probability distribution for the likelihood
that the operator will task the UAV to track a target given its current position.

The multimodal softmax (MMS) model proposed here

is a general probability distribution for discrete random

variables with continuous parents. It will be shown how

the MMS model emerges logically from the softmax model,

and that the MMS model naturally describes multimodal

discrete random variables with continuous parent variables.

Finally, applications of the MMS model will be given in

the context of operator decision prediction/classification for

a joint human-robotic team experiment.

II. PROBABILISTIC HUMAN DECISION MODELS

A. Bayesian Networks

Bayesian Networks (BNs) are intuitive representions of

probability distributions as directed acyclic graphs [2]. Com-

plex joint distributions (including discrete and continuous

random variable mixtures) are easily found through the

conditional dependencies entailed by the directed graph

structures [7]. Figure 1 shows a simple BN model for an

operator tasking a pair of robot vehicles (one car, one UAV).

Square and circular nodes represent discrete and continuous

random variables, respectively. Arrows connecting nodes

represent the direction of probabilistic ‘influences’ between

variables. The X(.) represent parent variables for the discrete

and continuous operator decision variables, D and C. X1 is

the position of a local target, while X2 and X3 are the tasked

vehicle type and the target bearing, respectively. The discrete

decision variable D is the tasked vehicle’s operator-assigned

strategic function mode, and C is the vehicle’s operator-

assigned continuous waypoint.

Realizations of D probabilistically depend on X1 and X2,

while realizations of C depend on X3 and D. This entails

conditional distributions P (D|X1, X2) and f(C|D,X3), as

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrB07.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4504

well as ‘prior’ distributions f(X1), P (X2), and f(X3)
1. The

product of these conditional distributions gives the BN’s joint

probability distribution [2],

f(Joint) = f(X1)P (X2)f(X3)P (D|X1, X2)f(C|D,X3).
(1)

Probability distributions for subsets of variables are found

via the joint distribution. However, finding ‘accurate’ yet

‘tractable’ conditional distributions for BNs with mixed

discrete and continuous variables is challenging [8]. Complex

distribution functions are difficult to use for BN inferencing;

simpler distribution functions may be very inaccurate.

As there is no universal method for finding probabilities in

BNs [7], the problem addressed here is batch estimation of

the conditional distribution P (D|X) for a discrete decision

D with a q-dimensional parent variable set X , using com-

plete labeled parent variable data. It assumed without loss of

generality that all elements of X are continuous, where X

has been identified within some static (i.e. time-independent)

graph2. While finding such conditional dependencies is a

complex problem in itself, several BN structural learning

methods could be used [7], [8], [11]. Furthermore, D’s

outcomes are assumed mutually exclusive and countably

finite. In general, D’s outcomes may each have several modes

of high probability in the X space (see Fig. 1).

BN models for P (D|X) often come from statistical

classification theory and are fit via supervised learning.

Some popular methods include tabulation via discretization

of X [7], [10], softmax modeling [8], and discriminative

mixture modeling [5], [9]. The curse of dimensionality makes

discretization difficult for q>2, as many data and parameters

are required to model the continuous X space adequately.

While softmax and ‘mixture of softmax’ distributions pro-

vide tractable continuous models for BN implementation [9],

[12], their accuracy is limited since they do not cope easily

with multimodalities in the X space.

B. Softmax Models

Suppose D has m discrete outputs dj , j ∈ {1, ...,m}.

P (D|X) can be modeled as a softmax distribution, which

acts as a thresholding function for the m outcomes over the

X space [3], [5]. The softmax distribution is defined as

P (D = dj |X = x) =
ew̃T

j x̃

m
∑

h=1

ew̃T
h

x̃

. (2)

where w̃j = 1
σj

[wj ,−bj]
T

and x̃ = [x, 1]
T

. For the jth

decision variable, the vector wj (‖wj‖ = 1) represents

relative weightings on the q-dimensional parent variables,

while the scalar σj represents a ‘threshold’ steepness, and

scalar bj represents a bias from zero. This gives m(q + 1)
free parameters (accounting for each wj’s norm constraint).

1f(.) is a continuous probability density function; P (.) is a probability
mass function for a discrete random variable

2Adding time dependency between nodes yields a DBN, which are
basically BNs repeated over discrete time slices [8].

(a) (b)

Fig. 2. Softmax distribution estimation example with synthetic data. (a)
Data for m = 3 decisions conditioned on two parent variables, showing
lines of equiprobability. (b) Probability surface for D = d2.

The weights w̃j can be learned from labeled decision data

using maximum likelihood estimation (MLE) [3]. Suppose

n labeled i.i.d. training data points ti are given such that

ti = [di, xi]
T

,i = {1, ..., n}, where di represents the one-

of-m decision label corresponding to a parent variable data

point xi. Let the training set be partitioned according to di

so that there are nj training data points for each D = dj ,

j ∈ {1, ...,m}. Then, the softmax likelihood L is defined to

be

L =

m
∏

j=1





nj
∏

kj

P (D = dj |X = xkj
)



. (3)

The weights maximizing Eq. 3 can be found via numerical

optimization using the Jacobian and Hessian of L with

respect to the w̃j [3], [5]. L is convex for softmax, so it

has a unique, globally optimum set of w̃j [5].

Fig. 2 illustrates softmax fitting results for a synthetic

set of data with three discrete decisions conditioned on two

parent variables (i.e. q=2), shown in Fig. 2(a). The resulting

probability decision surface for D = d2 using softmax

is shown in Fig. 2(b). Fig. 2(a) also shows the resulting

equiprobability lines, which are defined through the log-odds

ratio [5] as

log
P (D = dj |X = x)

P (D = dg|X = x)
= (w̃j − w̃g)

T x = 0. (4)

These lines denote points in the parent variable space where

decisions D = dj and D = dg have equal probabilities. Note

that these lines are hyperplanes for q>2, and can be inter-

preted as probabilistic boundaries between two decisions.

Qualitatively, the softmax distribution yields good proba-

bilistic decision boundaries between discrete decisions in the

X space if the training data for each dj has a single ‘cluster’

that is well-separated from other decisions by at most m−1
hyperplanes [3]. Fig. 3(a) shows data for another synthetic set

of three discrete decisions with two parent variables that are

not modeled well by the softmax distribution. The challenge

here is the non-convex grouping of D = d1 data sitting

between the disjoint clusters of D = d2 data (also non-

convex). As Fig.3(b) shows, softmax provides thresholds for

the D = d2 data using one weight set, leading to fuzzy

decision probability estimates.

4505

(a) (b)

Fig. 3. Example where softmax does yields inaccurate probabilites. (a)
Synthetic multimodal data with m = 3 decisions and two parent variables,
with lines of equiprobability. (b) Softmax probability surface for D = d2.

C. Mixture of Softmax Models

The mixture of softmax model [5], [9] is a weighted sum

of N softmax distributions, used for modeling multimodali-

ties. The distribution is written as

P (D = dj |X = x) =
N

∑

l=1

πl·
ew̃T

jlx̃

m
∑

h=1

ew̃T
hl

x̃

(5)

where πl represents the mixing weight of the lth softmax

model (
∑

l

πl = 1). The expectation-maximization (EM)

algorithm is used to train this model [5]. This approach

uses an outer optimization loop to ‘associate’ the training

data with the N softmax components, and N inner softmax

optimization loops to learn each set of softmax weights

(N is fixed in advance by the user). Training is trickier,

since the resulting set of softmax parameters is not always

‘minimal’ for the desired distribution (the total number of

parameters is N(m[q + 1] + 1)). Fig. 4 shows results of

training an N=5 softmax mixture distribution on the data

in Fig. 3(a). This results in 50 model parameters (compared

with 9 for the simple softmax model). Clearly, some weights

are redundant; the softmax thresholds overlap as they try to

predict the outcomes of D. This ‘inefficiency’ dilutes the

overall model’s precision: good predictions in some regions

are averaged together with poor ones. Two well-known

improvements to basic softmax mixtures are mixture of

experts and hierarchical mixture of experts [5]. The mixture

of experts approach varies πl weights over the parent variable

space, while the second approach is a mixture of mixtures

of experts. However, all softmax components still maintain a

full weight set for all m decisions, so the training processes

and resulting models remain ‘inefficient’.

III. MULTIMODAL SOFTMAX MODEL

The multimodal softmax model is a ‘divide and conquer’

strategy: if an entire data set of (non-convex) multimodal

decisions can be divided into smaller ‘convex’ clusters for

all decisions, then a single softmax distribution can be used

to model these convex clusters as a set of well-separated

‘sub-decisions’. Then, this softmax distribution’s outputs can

(a) (b)

Fig. 4. Mixture of Softmax model with N = 5 applied to data set in Fig. 3.
Decision probability surfaces for (a) D = d1 and (b) D = d2. Note the
poor fit in (b) for the d2 region in the lower right corner. The local minimum
log-likelihood (obtained here via the EM algorithm) is -24,768.81 .

be combined into a multimodal decision distribution for the

original (non-convex) decision data.

More formally, suppose that each original decision D =
dj has sj sub-decisions, for a total of

∑m
j=1 sj = s sub-

decisions, for m ≤ s. Let djl denote dj’s lth sub-

decision, l = 1, ..., sj . Let Ds be a discrete random

variable, conditioned on X , that selects r ∈ S =
{d11, ..., d1s1 , d21, ..., dmsm

}, where S is the set of all s sub-

decisions. Each sub-decision djl in S is a convex cluster

of decision data, so djl can be defined as the output of a

softmax distribution P (Ds|X), if the following substitutions

are made into Eq.2: s for m, Ds for D, and index jl for j.

The sj sub-decision softmax probabilities (defined for each

djl through P (Ds|X)) for each original decision dj are then

added together to yield the desired conditional probability

distribution, P (D = dj |X = x). This is done via the

theorem of total probability [2],

P (D = dj |X) =
∑

r∈{S}

P (D = dj |Ds = r) · P (Ds = r|X).

(6)

Here P (D = dj |Ds = r) = 1 only if r = djl for

l = {1, ..., sj}; otherwise P (D = dj |Ds = r) = 0. Since

P (Ds = r|X = x) is a softmax distribution, this gives

P (D = dj |X = x) =

sj
∑

l=1

P (Ds = djl|X = x) =

sj
∑

l=1

ew̃T
jlx̃

s
∑

h=1

ew̃T
h

x̃

,

(7)

where h indexes all s sub-decisions in S. Note that for s

total sub-decisions, there are s total softmax weights w̃jl;

each original decision dj has a corresponding set of sj

softmax weights. Thus, given X = x, Eq. 7 adds the relevant

sub-decision softmax probabilities for D = dj , as desired.

Eq. 7 defines the MMS distribution probability for D =
dj . Figure 5(a) shows the BN representation used for the

resulting MMS model. The continuous node X represents the

continuous parent variables, Ds is a hidden (i.e. unobserved)

softmax distribution node with s discrete outputs, and the

discrete node D represents the original set of m decisions,

now conditioned on Ds. Note that the MMS distribution has

s(q + 1) parameters (whereas the mixture of softmax model

has N(m[q + 1] + 1) parameters).

4506

(a) (b)

(c) (d)

Fig. 5. (a) Conceptual BN for the MMS model, where Ds is a hidden
softmax node. (b)-(d) MMS surfaces for Fig. 3(a) data are for D = d1,
D = d2, and D = d3, respectively. The log-likelihood here is -151.99.

For instance, in Fig. 3(a), one may specify s = 7 clusters

of sub-decisions over the m = 3 original decisions as

follows: s1 = 4 for d1 (i.e., one sub-decision for each

arm of the red cross), s2 = 2 for d2 (one sub-decision for

each disjoint blue cluster), and s3 = 1 for d3 (one sub-

decision for the one black cluster). These s = 7 sub-decisions

are modeled probabilistically by assuming that each sub-

decision is a ‘separable’ outcome of single discrete decision

random variable Ds, which (when conditioned on X1 and

X2) selects an element from the set of sub-decisions S =
{d11, ..., d14, d21, d22, d31}. This allows the sub-decisions in

S to be modeled with a softmax distribution, where each of

the s weights has q + 1 parameters. Since Ds only chooses

one sub-decision from S at a time and each of the s sub-

decisions descends from one of the original m = 3 decisions,

it follows that D = dj any time X = x gives Ds = djl. For

instance, in the case of Fig. 3(a), if it is given that Ds = d21

when X = x, then D = d2 must occur with probability 1.

Figure 5(b)-(d) show the resulting probablity surfaces fitted

via an MLE procedure (described next). Clearly, these MMS

decision probability estimates (using 21 total parameters)

are sharper than the softmax mixture probabilities in Fig.

4 (which uses 50 parameters for N=5), since ‘parameter

overlap’ is greatly reduced in the MMS model.

A. ML Estimation of MMS Weights

To optimize the softmax weights in Eq. 7, the sub-decision

number sj must be given for each dj . If the softmax likeli-

hood (Eq.3) for P (Ds|X) were maximized, then the decision

label di in ti would be replaced with the sub-decision label

djl, and the user would have to manually partition the data

among the s sub-decisions while tracking the correlations

between sub-decisions djl and original decisions dj .

Fortunately, such explicit repartitioning of the data is

unnecessary. As long as only the values of all sj is specified,

the ‘optimum’ data partition can be found automatically by

directly maximizing the likelihood of the originally labeled

training data (i.e. ti = [di, xi]
T

) over the s softmax sub-

decision weights using P (D|X) in Eq. 7.

Substituting Eq. 7 into Eq. 3 for P (D|X), the MMS

likelihood for the original labeled training data is

LMMS =
m
∏

j=1









nj
∏

kj=1









sj
∑

l=1

e
w̃T

jl
x̃kj

s
∑

h=1

e
w̃T

h
x̃kj

















, (8)

where h indexes all s sub-decisions and l indexes only the sj

subdecisions for dj in Ds. It is more convenient to maximize

the log-likelihood,

log(LMMS) =
m
∑

j=1

nj
∑

kj=1

log

[

sj
∑

l=1

e
w̃T

jlx̃kj

]

−
n
∑

k=1

log

[

s
∑

h=1

ew̃T
h x̃k

]

.
(9)

A gradient-based or quasi-Newton optimization algorithm

can be implemented to find the optimal sub-decision weights,

which are q + 1 dimensional. The column of the Jacobian

corresponding to
∂ log(LMMS)

∂w̃jl
is given by

∇w̃jl
log(LMMS) =

nj
∑

kj=1

x̃kj

e
w̃T

jlx̃kj

sj
∑

l=1

e
w̃T

l
x̃kj

−

n
∑

k=1

x̃k

ew̃T
jlx̃k

s
∑

h=1

ew̃T
h

x̃k

.

(10)

The Hessian is a s(q + 1)× s(q + 1) symmetric matrix. Let

Hwjl,wpg
denote the q + 1× q + 1 block that is obtained by

differentiating the
∂ log(LMMS)

∂w̃jl
column of the Jacobian with

respect to w̃pg , which is the weight corresponding to the gth

sub-decision of decision D = dp. Then,

Hwjl,wpg
=



















nj
∑

kj=1

x̃kj
x̃T

kj
ρ

jl
kj

−
n
∑

k=1

x̃kx̃T
k ξ

jl
k (jl = pg)

−
nj
∑

kj=1

x̃kj
x̃T

kj
α

jl,pg
kj

+
n
∑

k=1

x̃kx̃T
k β

jl,pg
k (jl 6= pg)

(11)where

ρ
jl
kj

=

sj
∑

l=1
l 6=jl

e
(w̃jl+w̃jl)

T x̃kj

[

sj
∑

l=1

e
w̃T

l
x̃kj

]2 , ξ
jl
k =

e
w̃T

jl
x̃kj +

s
∑

h=1
h6=jl

e
(w̃h+w̃jl)

T x̃k

[

s
∑

h=1

e
w̃T

h
x̃k

]2

β
jl,pg
k = e

(w̃jl+w̃pg)T x̃k
[

s
∑

h=1

e
w̃T

h
x̃k

]2 , α
jl,pg
kj

= e
(w̃jl+w̃pg)T x̃kj
[

sj
∑

l=1

e
w̃T

jl
x̃kj

]2 · δjg.

(12)

Note that δjg is the Kronecker delta function on j and g.

Unlike the softmax likelihood (Eq.3), LMMS is not guar-

anteed to have a global maximum for sj > 1, due to

symmetry of the sub-decision weights w̃jl for D = dj (if

all sj = 1, then the softmax model is obtained and a global

maximum exists). While LMMS may have saddle points, it

never has minima since the Hessian is never positive definite.

4507

TABLE I

FIGURE 6 WEIGHTS AND OPTIMUM LOG-LIKELIHOOD.

[s1, s2, s3] Number of Weights log (LMMS)
[2, 1, 1] 12 -1176.4647
[2, 1, 2] 15 -719.6104
[2, 2, 2] 18 -185.3046
[2, 5, 2] 27 -180.5428
[3, 3, 3] 27 -180.3805

B. Choosing sj and Preventing ML Overfit

Since it may be impossible to visually obtain sj (as done

above) when q is large, clustering methods can be used to

give initial guesses for sj . Taking data only for D = dj ,

k-means clustering [5] can be used to find the best number

of sub-decision clusters in the X space. In particular, some

software packages enable visualization of the ‘goodness of

fit’ of data to proposed kj clusters (e.g. silhouette plots

in Matlab’s Statistics Toolbox). This helps determine if

significant (possibly disjoint) decision modes exist for dj

(e.g. in terms of Mahalanobis distance ‘membership sizes’),

and the approximate number of sub-decisions sj needed to

discriminate dj from among the m decisions in the X space

(e.g. using centroid distances between all proposed s sub-

decision clusters). Note, a similar approach is often used to

intialize components in Gaussian mixture modeling [5].

It seems worthwhile to numerically explore sj to find the

largest LMMS . However, as with all MLE methods, there

is great risk of overfitting to the data. Table I lists the

number of weights and optimum log-likelihood values for

various choices of [s1, s2, s3] using the synthetic data set

shown in Fig. 6(a). The decision surfaces for D = d2 are

shown in Fig. 6(b)-(d). Table I shows that setting [s1, s2, s3]
to [2, 5, 2] or [3, 3, 3] results in overfit; the log-likelihood

does not improve much from [2, 2, 2]. Fig. 6(d) shows that

excess sj sub-decisions in the [2, 5, 2] case are fit to outliers

with very sharp thresholds. Note that the ‘optimum’ LMMS

always increases as sj increases. Hence, it is recommended

to initialize sj through clustering. Then, each sj can be

increased (or decreased) until the ‘optimum’ log-likelihood

stops (starts) changing significantly at convergence.

IV. EXPERIMENTAL RESULTS

The MMS model was compared with the softmax mixture

model and the nonparametric Parzen classifier [14] in a

classification task using real human operator decision data.

The data were collected from human-robotic studies on

Cornell’s RoboFlag testbed [1], in which humans tasked a

team of robotic vehicles in a reconaissance mission with an

‘enemy’ team of robot agents. The mission objective was

to locate and identify the enemy team’s stationary target

vehicles without getting tagged by the enemy chaser vehicle

or colliding with the targets. The human’s team had two fast-

moving search vehicles that located targets, and a slower ID

vehicle that identified targets. Tagged vehicles returned to

a home base before returning into play. Operator tasking

decisions and simulation state information were recorded.

The method of [4] was used to find parent variables X for

paired sets of discrete operator decisions D. See [3], [4] for

a complete description of the RoboFlag experiments.

(a) (b)

(c) (d)

Fig. 6. Effects of varying sj on the MMS probability estimates for the
decision data in (a). MMS surfaces for D = d2 (blue circles in (a)) are
shown for [s1, s2, s3] = (b) [2, 1, 2],(c) [2, 2, 2], and (d) [2, 5, 2].

TABLE II

10-TRIAL CLASSIFIER HOLDOUT ERROR STATISTICS.

Data Set Model mean % error std.dev. max error

‘ID/Loc’ Parzen 16.83 1.24 19.34
vs. Softmax Mix 23.96 8.61 42.57

’Evasive’ MMS 17.07 0.83 18.11

‘Decoy’ Parzen 4.02 0.37 4.72
vs. Softmax Mix 21.17 32.24 93.16

‘Strategic’ MMS 3.84 0.28 4.23

Each data set for the paired decisions was randomly split

into a training set and a holdout set 10 different times for the

three classifier models. MMS and softmax mixture classifiers

were trained with the aforementioned procedures, while

Parzen classifiers were trained to minimize the leave-one-out

cross-validated Bayes’ error (with flat priors) [14]. Holdout

classification error statistics (mean percent error, standard

deviation, maximum percent error) for each classifier were

then obtained.

Fig. 7(a) shows data for two high-level, strategic op-

erator tasking decisions on all three friendly vehicles:

D=‘ID/Localize’ (move vehicle near enemy target to ob-

tain identity/location) and D=‘Evasive Maneuver’ (change

trajectory to avoid tag or collision). The parent variables are

the tasked vehicle’s range to chaser (X1) and the vehicle’s

range to the closest target (X2). Fig. 7(b) shows the MMS

probability surface for D=‘Evasive Maneuver’, with s1 = 1
for D=‘ID/Localize’and s2 = 2 for ‘Evasive Maneuver’.

The MMS model clearly captures the increased likelihood of

‘Evasive Maneuver’ around the two modes that are correlated

to the tasked vehicle being either too close to either an

enemy target or the chaser. The X1 and X2 values for the

decision surface’s ‘corner’ in Fig. 7(b) can be interpreted

as the average minimum distances that the operators kept

4508

(a) (b)

(c) (d)

Fig. 7. (a) Data for D=‘Evasive Maneuver’ and D=‘ID/Localize’. (b)
MMS surface for D=‘Evasive Maneuver’. (c) Data for D=‘Decoy’ and
D=‘Strategic Position’ . (d) MMS surface for D=‘Strategic Position’.

from each type of enemy vehicle while trying to identify or

localize enemy targets. Fig. 7(c) shows data for a pair of

operator decisions on the search vehicles: D=‘Decoy’ (lure

chaser away from rest of team) and D=‘Strategic Position’

(place vehicle in useful position until needed later). The

parent variables X3 and X4 are, respectively, the tasked

vehicle’s range to the chaser and the ID vehicle’s waypoint

distance to the chaser (i.e. the distance from the chaser

to the field waypoint assigned by the operator to the ID

vehicle). X4 is relevant since the chaser can get a lead

on the slower ID vehicle and intercept it en route to the

waypoint. Fig. 7(d) shows the MMS probability surface for

D=‘Strategic Position’, with s1 = 2 for D=‘Decoy’and s2 =
1 for ‘Strategic Position’. The soft decision boundary parallel

to the X3 axis and the sharper decision boundary parallel to

the X4 axis indicate how strongly the decisions depend on

the chaser’s distance to the ID and search vehicles3.

Table II shows holdout error statistics for these data sets

using Parzen, softmax mixture (N=2 for both cases) and

MMS (with the above sj). For both decision data sets, 500

points from each of the two decision classes were used

to train each classifier. For the ‘ID/Localize’ vs. ‘Evasive

Maneuver’ trials, 989 ‘ID/Localize’ points and 585 ‘Evasive

Maneuver’ points were used for validation. For the ‘Decoy’

vs. ‘Strategic Position’ trials, 670 ‘Decoy’ points and 631

‘Strategic Position’ points were used for validation. The re-

sults show that the MMS model achieves good accuracy and

consistency with only 9 parameters for both decision sets; the

Parzen classifier only achieves about the same performance

by storing all training data points, so that it effectively

carries over 1000 parameters. The softmax mixture exhibits

3Note: all distances are in meters.

higher error rates and variance on both decision sets (with

14 parameters) than either MMS or Parzen. Note that the

results for the ‘Decoy’ vs. ‘Strategic Position’ trials contain

three substantial outlier errors (e.g. the maximum at 93%).

Without these, the mean softmax mixture holdout error is

5.33% ± 1.1% (7% max); MMS still outperforms this.

V. CONCLUSIONS AND FUTURE WORK

The MMS distribution was developed for multimodal

operator decision modeling. The MMS model can be easily

fit to multimodal data to produce crisp conditional probabil-

ity estimates; clustering methods can aid the MLE fitting

process. Results from experimental decision data showed

that MMS can outperform standard probabilistic models in

multimodal classification while using a sparser weight set.

MMS models are clearly suitable for many classification

problems. Future work includes further theoretical investi-

gation of MMS and the adaptation of a Bayesian fitting

procedure (akin to a method of softmax training where priors

are placed on model weights [5]). Since the simplicity of

MMS makes it an attractive model to use in BNs/DBNs,

inference in larger scale hybrid BNs will be studied using

variational [12] and Monte Carlo techniques [8].

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contribution of the

Air Force Office of Scientific Research (AFOSR) and Dr.

Scott Galster of the Air Force Research Laboratory (AFRL).

REFERENCES

[1] M. Campbell, F. Bourgault, S. Galster, and D. Schneider, ”Toward
Probabilistic Operator-Multiple Robot Decision Models”, in Proc.

ICRA, 2007.
[2] R. Neapolitan, “Learning Bayesian Networks”, Prentice-Hall, Upper

Saddle River, NJ; 2003.
[3] M. Campbell, S. Sukkarieh, and A. Goktogan, ‘Operator Decision

Modeling in Cooperative UAV Systems”, in Proc. GNC, Keystone,
CO, August 2006.

[4] F. Bourgault, N. Ahmed, D. Shah, and M. Campbell, “Probabilistic
Operator-Multiple Robot Modeling Using Bayesian Network Repre-
sentation”, in Proc. GNC, Hilton Head, SC, August 2007.

[5] C. Bishop, Pattern Recognition and Machine Learning, Springer, New
York: 2006.

[6] R. Parasuraman, T. Sheridan, and C. Wickens, “A Model for Types
and Levels of Human Interaction with Automation,” IEEE Trans. on

Man, Sys. and Cyb., vol. 30, no.3, May 2000.
[7] F. Jensen, Bayesian Networks and Decision Graphs, Springer Verlag,

New York: 2001.
[8] K. Murphy, “Dynamic Bayesian Networks: Representation, Inference,

and Learning,” Ph.D. Dissertation, UC Berkeley, 2002.
[9] D. Koller, U. Lerner, and D. Angelov, “A General Algorithm for

Approximate Inference and Its Application to Hybrid Bayes Nets,”
in Proc. UAI, 1999.

[10] M. Neil, M. Tailor, and D. Marquez, “Inference in Hybrid Bayesian
Networks Using Dynamic Discretization,” Statistics and Computing
vol.3, no.17, September 2007.

[11] S. Monti and G. Cooper, “ Learning Hybrid Bayesian Networks from
Data,” in Learning in Graphical Models, MIT Press, Cambridge, MA;
2001.

[12] K. Murphy, A Variational Approximation for Bayesian Networks with
Discrete and Continuous Latent Variables , in Proc. UAI, 1999.

[13] T. Kaupp, A. Makarenko, S. Kumar, B. Upcroft, and S.
Williams,“Operators as Information Sources in Sensor Networks”, in
Proc. IROS, 2005.

[14] G. McLachlan, Discriminant Analysis and Statistical Pattern Recog-

nition, Wiley, Brisbane: 1992.

4509

