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Abstract— Recent research has shown that robots can model
their world with Multi-Level (ML) surface maps, which utilize
‘patches’ in a 2D grid space to represent various environment
elevations within a given grid cell. Though these maps are
able to produce 3D models of the environment while exploiting
the computational feasibility of single elevation maps, they
do not take into account in-plane uncertainty when matching
measurements to grid cells or when grouping those measure-
ments into ‘patches.” To respond to these drawbacks, this paper
proposes to extend these ML surface maps into Probabilistic
Multi-Level (PML) surface maps, which uses formal probability
theory to incorporate estimation and modeling errors due to
uncertainty. Measurements are probabilistically associated to
cells near the nominal location, and are categorized through
hypothesis testing into ‘patches’ via classification methods that
incorporate uncertainty. Experimental results comparing the
performances of the PML and ML surface mapping algorithms
on representative objects found in both indoor and outdoor
environments show that the PML algorithm outperforms the
ML algorithm in most cases including in the presence of noisy
and sparse measurements. The experimental results support
the claim that the PML algorithm produces more densely
populated, conservative representations of its environment with
fewer measurements than the ML algorithm.

I. INTRODUCTION

As military and commercial applications of field robotics
become more prevalent, there is a growing need to improve
a mobile robot’s ability to understand and map its environ-
ment. For example, when autonomous robots are sent into a
collapsed building in search of survivors or put in charge of
exploring a building that might house explosives or hostile
enemies, they must be able to navigate through an environ-
ment that is largely unknown a priori. Perception is a critical
precursor to planning because successful navigation relies on
accurate modeling and understanding of the environment.

In the past, there has been a surge of methods aimed
to empower robots to map complex indoor and outdoor
environments. The simplest, yet most informative method is
to represent the environment with binary 3D grids that divide
the robot environment into voxels. The environment is then
defined by each of its voxels’ occupancy status. This method
is implement in [1] using a stereo camera to gather disparity
and depth information about an indoor environment. [2] uti-
lizes this method to solve the simultaneous localization and
mapping problem using dual laser scanners. Though voxel
representations of the environment are most informative in
the sense that they fully-model the 3D space, they suffer from
significant computational burdens in maintaining a dense 3D
grid that grows with the cube of distance travelled.

Another popular method for representing environment
topology is the use of elevation maps. An elevation map
represents the space using a 2D grid where each cell stores
the dominant height of the terrain contained within the
grid cell. This 2D representation has lower computational
demands than the voxel representation while still maintaining
a rich model of the environment. This method is employed in
[3] to build elevation surface models using laser range data to
navigate their walking robot. [4] represents the terrain at an
excavation site with elevation maps using a laser rangefinder.
Though these 2D methods work well in environments where
each grid cell has one dominant height, they fail to accurately
represent the environment when employed in multi-level
environments containing trees, overhangs, tunnels, tables,
and chairs. To alleviate these shortcomings, [5] creates an ex-
tension for elevation maps to handle objects such as bridges
and underpasses in outdoor environments. This extended
elevation algorithm allows the map to choose which elevation
to keep in its representation, and whether it is the dominant
one or not. While this enables planning and navigation under
bridges or through tunnels, it is limiting in the sense that the
robot must choose which of the multiple elevation levels to
represent. As a result, a robot choosing to drive under a
bridge would never be able to drive on the bridge at later
times.

Miller and Campbell [6] implement a real-time terrain esti-
mator that takes into account common sources of uncertainty
to estimate terrain height in a 2D grid. They fit a Gaus-
sian distribution over each measurement’s nominal location,
and use this probability distribution to generate minimum
mean-squared error elevation estimates on neighboring grid
cells near the nominal measurement. After these estimates
are generated, Bayesian data fusion is used to generate a
minimum mean-squared error estimate of the terrain. [6]
implemented this algorithm on Cornell University’s 2005
DARPA Grand Challenge robot, using laser rangefinders
to produce a probabilistic elevation map of the outdoor
environment. Though this method suffers from limitations
of only having one dominant height in the 2D environment
maps, it is the only one that produces true statistical estimates
that account for all sources of uncertainty, even across in-
plane cells.

In order to provide mobile robots with a broader nav-
igation space, Triebel er al. [7] propose a method called
Multi-Level (ML) surface mapping for maintaining multiple
elevations in the grid space. They maintain ‘patches’ for
each cell, which represent traversable height levels in the



environment at that cell; thus, the environment features are
represented using either vertical or horizontal patches de-
pending on the feature. As new measurements are taken, they
are either assimilated into older patches or used to generate
new ones. This method allows mobile robots to represent
multiple elevation levels in the environment simultaneously,
without incurring the computational burden of a dense voxel
representation. This method, however fails to adopt a formal
probabilistic approach, and suffers from several drawbacks
as a result:

1) it ignores important sources of uncertainty, such as
robot pose and sensor calibration, which may result in
significant distortions in terrain estimates.

2) it assumes an arbitrary model for laser height un-
certainty instead of mapping errors, which will result in
suboptimal estimation.

3) it does not consider in-plane measurement errors, such
that the estimate of each terrain feature is suboptimal.

4) it relies on ad hoc clustering algorithms rather than
Bayesian decision theory to decide the structure of the terrain
(i.e. whether to start a new patch or not).

In order to model the environment accurately, a robot must
account for both the multi-level nature of its environment and
the measurement uncertainty. In response to this need, this
paper proposes a Probabilistic Multi-Level (PML) surface
map that extends the ML surface map to include a prob-
abilistic representation of the terrain using formal Bayesian
techniques. In particular, the PML surface mapping approach
extends the ML surface map to rigorously include multiple
sources of uncertainty as in [6] to reduce distortions on
the terrain estimates. In addition, the approach considers in-
plane measurement uncertainty to perform optimal terrain
estimation on the locations of terrain features in addition
to the elevations. Once elevation estimates for the various
cells are calculated, the PML surface mapping algorithm
utilizes Bayesian decision theory to classify these elevation
estimates into cell patches according to a modified version
of the classification methodology in [7]; it will be shown
statistically that the horizontal patches can be discarded
without loss of performance. Finally, each elevation estimate
will be used to modify the properties of the patch in the cell
it belongs (i.e. its mean, depth and probability).

This paper is outlined as follows. Section II describes the
methodology for creating PML surface maps in two main
steps: 1) in-plane probabilistic assignment of measurements
into cells and elevation estimate generation and 2) classifi-
cation of elevation estimates into patches and combination
of correlated patches. Section III presents and discusses the
experimental results obtained from implementing the ML
and PML surface mapping algorithms on generic objects
that can be composed to represent both indoor and outdoor
environments for varying performance parameters. Finally,
the conclusions are presented in Section IV.

II. PML METHODOLOGY

The proposed PML surface map augments Triebel’s ML
surface map through rigorous treatment of sensor errors

and formal probability techniques to incorporate elevation
estimates into patches and patch combination. First, elevation
estimates are generated for each single raw measurement for
both the originating cell location and its neighboring cells
according to the method described in [6]. This produces a
probabilistic elevation estimate z;7 = N (U;’j,cr?ﬂ_j) for
each measurement k for every cell ¢; ;. Each estimate is
then either assimilated into a patch within the cell it belongs
to or used to create a new patch for that cell. Finally the
correlated patches, defined as patches that are spatially and
probabilistically similar, are combined to produce the final
PML surface map. Notice the proposed PML surface map
utilizes two key features: A) incorporation of measurement
uncertainties in the probabilistic assignment of measurements
to the cells, similar to [6], and B) development of the multiple
levels of the map building on the concepts in [7].

A. Measurement Assignment and Multiple-Level Patches

The probabilistic elevation estimates z,ij obtained as de-
scribed in [6] are assigned into patches for cells ¢; 5, in a
method similar to [7]. For every cell ¢; ;, a database of one
or more patches, each represented by a mean U7, variance
a?];;,j, depth d%’ and probability p’” , is maintained for
the e'" patch as shown in Figure 1. The depth parameter
represents the length of the patch below its mean; it is
only non-zero for vertical objects. As mentioned earlier, a
study was conducted on the need to use a horizontal-and-
vertical (HnV) patch representation similar to [7] versus a
vertical-only (Vonly) patch representation. An environment
map was generated with both representations, and a statistical
comparison was made. The results shows that the V-only
representation had transformed nearly 97.5% of the horizon-
tal patches from the HnV map into vertical patches with
non-zero depth, leaving less than 2.5% as zero-depth vertical
patches. As a result it was determined the horizontal patches
could be eliminated from the algorithm.

Once an elevation estimate z;j is determined, it must
be subjected to the classification procedure in Figure 2.
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Fig. 1. Elevation estimate and two patches for cell c; ;.



This procedure seeks to answer one main question: does the
elevation estimate z,;” extend a current patch, or belong to
a new patch? This question is answered via hypothesis test-
ing on two parameters: spatial correlation and probabilistic
correlation.

1) Spatial Correlation: In order to answer the question of
whether an elevation estimate extends a current patch, it first
must be determined if its spatially correlated to that patch.
To determine this correlation, hypothesis testing is performed
to compare the elevation of the measurement estimate with
respect to the elevation of the closest section of the current
patch (i.e. if the estimate is below the patch, it compares
the estimate with the elevation of the bottom of the patch).
The null hypothesis Hj is defined as the elevation estimate
being spatially correlated, and thus possibly extending the
patch, while the alternate hypothesis H; is that the elevation
estimate is not spatially correlated to the patch. Since the
measurement noise is assumed to be Gaussian, the observa-
tion likelihoods are defined relative to the elevation of the
closest point of the patch to the estimate by

p(zk|Ho) = N(O,U*u +0Uu) 1
plzx|H1) = N(9, UULJ +0Uu) 2)

where 6 is the noise-free elevation relative to the closest
patch elevation for the estimate 6U;” = 6 — w, and w =
N(0, O‘Ai ) is the estimate noise. Notice that the likelihood

uncertalnty is a composition of the estimate uncertainty and
o2, ;, the elevation uncertainty of the patch in question. The
hypothesis is then tested using the likelihood ratio

p(zk|Hy)
p(2x|Ho)’

where A(zx) > Ay gives 1 — « probability that H; is true,
when Ag is determined via p(A(zy) > Ao|Hop) = a.
Generally there are three types of cases where this test
would be applied: 1) elevation estimate is above the patch,
2) elevation estimate is below the patch and 3) elevation
estimate is found within the patch. For all cases, however
a height test point in the patch is chosen to apply the
hypothesis test against the elevation estimate. If the estimate
is above the patch, the closest point in the patch to the
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Fig. 2. Measurement-patch classification procedure for multiple elevation
levels.

estimate is the patch mean, and U, 6” would be used as the test
point against the estimate. If the estimate is below the patch,
the bottom of the patch U7 — D%J would be used instead,
where D%7 is the patch depth. If the elevation estimate is
found within the patch, the closest height section of the patch
will have the same elevation as the estimate. Notice that [7]
take a heuristic approach to this spatial correlation through
the use of the performance parameter v, which represents
the minimum distance between two completely uncorrelated
patches. A study of the effect of this performance parameter
is presented in this paper’s experimental results.

2) Probabilistic Correlation: Once an estimate is found
to be spatially correlated to a patch, its probabilistic cor-
relation [may be use another name because in literature it
means different] must be assessed to finally determined if
it is extending said patch. An estimate is probabilistically
correlated to a patch if the probability of the estimate is
statistically ‘close’ to that of the patch (i.e. if an estimate
has a very low probability, while the patch has a very high
probability, it can be said that the two are probabilistically
uncorrelated). To determine this closeness, hypothesis testing
is performed on the elevation estimate’s and the patch’s
probabilities. In this case, the probability distribution of the
patch is assumed to be Gaussian N(pL/, o ) where pi is
the patch probability and Jg is the probablhty uncertainty,
which can be selected by the user. This hypothesis test is
done in a similar manner to the spatial correlation test. In
this case, however, the null hypothesis Hy is defined as the
estimate being probabilistically correlated, while the alternate
hypothesis H; as lacking correlation. A similar likelihood
ratio is formed with the observation likelihood

p(zx|Ho) = N(0,0’iz,j + 0127) “4)
p(ze|H1) = N(¢, (7127;;;' + Ug) )

where ¢ is the noise-free probability of the elevation
estimate dp;’ = ¢ — v relative to the probability of the
patch, and v = N(0, 012),31 ;) is the estimate probability noise.

Once an estimate is found to be correlated both spatially
and probabilistically to a patch, the patch characteristics must
be updated. If the elevation estimate is located above the
patch mean U/, the algorithm uses the following to update
the patch

D = DY LU — Ui (6)
uio= U (7
O'Ui,j = UUli,j (8)
o 1 ..
v’ = 50 +pgi) ©)

while if the estimate is below the patch mean, it is updated
by

D = max(UX — U7, D7) (10)
vl = U (11)
O'Ui,j = O'Ué,j (12)
. 1, ..
) — —_ (I o
p’ = S +pgi) (13)



B. Patch Consolidation

Once all the elevation estimates are incorporated into their
corresponding patches, a consolidation process is applied
that combines patches that ‘belong’ together by applying the
same hypothesis tests described in the previous section. The
algorithm evaluates spatial and probability correlations of all
patches within each cell and then combines those that are
correlated.

III. EXPERIMENTS AND RESULTS

Both the ML and PML surface mapping algorithms have
been implemented and validated using the experimental
testbed shown in Figure 3. The mobile robot platform is a
Pioneer P3DX equipped with a URG-04LX laser rangefinder
with range up to 4 m and scanning field of view of 240°
with a beam width of 0.35°/beam for a total of 681 points
per scan. The laser position is gimbaled, and orientation is
controlled with two servo-motors atop the robot. The robot is
equipped with a 2GHz mini-ITX computer with 1IGB RAM
memory. The data collected from the laser rangefinder is
post-processed to obtained both the ML and PML surface
maps. Position and orientation information for the robots
is obtained from a Vicon system, which estimates pose by
tracking IR reflective balls attached to the equipment. Both
ML and PML algorithms were implemented on a 65x65 grid
space, with 5 cm? cells. The coordinate axes is set so the
EN plane is parallel to the floor and the U axis is pointed
towards the testbed ceiling.

Three of the four experimental set-ups are shown in Figure
3. In order to gauge each algorithm’s ability to map both
indoor and outdoor environments, a set of four representative
objects were chosen as tests. The four objects were a tunnel,
a wall, a shallow hill and a flat surface. Data was collected
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Fig. 3. Experimental platform (top-left) and experiment set-up: Wall (top-
right), Shallow Hill (bottom-left), Tunnel (bottom-right)

by driving the robot back and forth in a straight line and
sweeping the laser up and down the object. Several tests
were completed varying the performance parameters for
each mapping algorithm: for ML algorithm the minimum
distance between patches v was varied, while for the PML
the probabilistic correlation uncertainty o, was varied. In
the case of the ML algorithm, the smallest v was chosen
to match the average uncertainty in range measurements
so as to accurately compare to the PML algorithm, while
the two larger ones were chosen to represent typical robot
heights (25 & 100 cm). For the PML, the smallest probability
uncertainty o, was chosen slightly below half the average
uncertainty in the range measurements, while the larger two
were chosen two consecutive orders of magnitude higher so
as to loosely match the larger + parameters for the ML
algorithm. Both algorithms were tested on three different
scenarios: 1) noisy-dense data, where additional Gaussian
noise, (N(0, 0poise = 0.001 cm)), is introduce on all the
range data obtained (DS = # laser beams skipped = 0), 2)
clean-dense data, where no additional noise is introduced and
all the range data is used (DS = 0), and 3) clean-sparse data,
where no additional noise is introduced, but a number of the
range measurements are discarded (DS = 30) to simulate
sparse data, thus taking only 23 points per laser scan.

In order to measure and compare the performance of each
mapping algorithm, a metric was created that quantified the
accuracy of the surface map generated against truth data
obtained for the object using the Vicon localization system.
For both the truth data and the ML and PML maps created,
a full binary (occupied or not) 3D grid representation was
created. Then, the 3D binary voxel representation for the
ML and PML surface maps were compared against the truth.
Finally, disparities were added and a score S was generated
according to

S = wy * X(miss) + we * X(extra), (14)

where w; and wo are weighting constants, and ¥ (miss)
is the total number of voxels the mapping algorithm missed
from the truth, while X(extra) is the total number of extra
voxels the mapping algorithm added over the truth. In this
paper, w; and ws were chosen to be 75% and 25%, thus
giving more penalty to missing occupied voxels and less to
wrongly occupying empty voxels. The reasoning behind this
decision is the need for a conservative mapping algorithm;
in general, it is better to have a map that overestimates
obstacles in the environment. In addition, the truth data
obtained from the Vicon system only represents the object
itself, and therefore is missing data such as the floor beneath
the object. Though this metric is not perfect, it serves well
to qualitatively compare the performance of each mapping
algorithm.

The results from all the tests performed are tabulated
in Table 1. The section called PMLScores x 100 show the
scores determined according to Eq. 14 for all the tests. The
ScoreRates section shows the rate of change of the scores
when the performance parameters are increased (i.e. Tunnel
rate is 1.1 when changing the o, from 1.5 to 15 cm). Finally,



TABLE I
PML AND ML EXPERIMENT RESULTS

PML Scores*100 Score Rates onlclean or clean/DS
op [em] Tunnel | Floor | Wall | Hill Tunnel | Floor | Wall | Hill | Tunnel | Floor | Wall Hill
1.5 clean 6.3 26.7 0.1 0.2 — — — — — — — —
15 clean 6.7 39.3 0.1 1.3 1.1 1.5 1.9 6.1 — — — —
150 clean 24.1 40.3 0.4 2.4 3.6 1.0 2.8 1.8 — — — —
1.5 noise 8.6 34.5 0.1 3.1 — — — — 0.4 1.3 1.1 14.6
15 noise 16 48.4 0.1 6.6 1.9 1.4 1.7 2.1 14 1.2 1.0 5.0
150 noise 32.5 49.6 0.9 10.9 2.0 1.0 6.4 1.7 0.3 1.2 2.3 4.6
1.5 DS=30 1.8 52 0.0 0.1 — — — — 3.6 52 2.0 2.0
ML Scores*100 Score Rates on/clean or clean/DS
7 [em] Tunnel | Floor | Wall | Hill | Tunnel | Floor | Wall | Hill | Tunnel | Floor | Wall | Hill
44 clean 1.6 0.3 14 0.1 — — — — — — — —
25 clean 1.9 1.6 2.1 0.1 1.2 5.2 1.5 1.3 — — — —
100 clean 6.6 1.6 8.2 0.1 3.4 1.0 3.9 1.2 — — — —
4.4 noise 2.0 0.1 1.4 0.1 — — — — 1.3 0.2 1.0 1.2
25 noise 3.1 6.2 2.6 0.7 1.5 113.5 1.8 7.7 1.6 39 1.2 6.6
100 noise 6.9 7.0 7.7 4.0 2.2 1.1 3.0 6.2 1.1 44 0.9 335
4.4 DS=30 0.8 0.3 0.5 0.0 — — — — 2.0 1.1 2.6 2.9

the last subdivision shows the ratio of the scores between o,
and clean or clean and D.S according to the respective tests
(i.e. the ratio of o,/clean = 1.6 for ML Tunnel represents
the ratio between the o,, score of the ML Tunnel with noise
and that of the ML Tunnel clean, both at y= 4.4 cm, while
the ratio of clean/DS = 2.0 for the Wall represents the ratio
between the PML Wall clean score and that of the PML Wall
test that skips 30 laser rays both at o, = 1.5). Notice also
that Figure 4 shows, in a top down order, the resulting PML
surface maps for o, = 0.15, o, = 0.015, as well as the ML
surface map for v = 0.025. The results in Table I show:

1) the PML algorithm generally performs better than the
ML algorithm except for the Wall object, which can be seen
by comparing the scores in the corresponding PML columns
with those of the ML columns for the different objects.

2) increasing the algorithms’ performance parameters o,
for PML and  for ML generally increases the score of both
algorithms, however, there are cases where further increase
on those parameters decreases performance. By looking at
the PML and ML Scores columns, a monotonic increase
on the raw scores is seen for all the objects. Nevertheless,
by focusing on the rate columns, which show the rate of
performance increase from one parameter to its increased
value, depending on the object the rate drops as the parameter
is increased (i.e., the PML Hill rate decreases from 6.1 to
1.8 as o, increases from 0.015 to 0.15 and the ML Floor
rate decreases from 5.2 to 1.0 as ~ increases from 0.025 to
0.1). This diminishing effect on the score can be deduced
visually by looking at the top and middle maps generated on
Figure 4. These are maps generated by the PML algorithm
at 0, = 0.15 and o, = 0.015 respectively. The plots show
that the underpass feature of the tunnel is nonexistent for a
large enough probability correlation variance o,. The reason
why the algorithm shuts down the underpass is because
it correlates patches on the top of the tunnel to estimates
distributed at the center from the side walls of the tunnel.
That is, estimates nominally originating from side walls of
the tunnel around cells (0.5,0.2) and (-0.5,0.2) are associated
to neighboring cells near the symmetric center of the tunnel
around cell (0.0,0.2). Though these associated estimates

have very low probability of originating at this center cell,
with a very large probability correlation variance they are
incorporated into the patches directly above the center cell,
thus closing the tunnel entrance. In the limit, as the o),
increases, the PML algorithm reduces to a terrain elevation
estimator alike that of [6].

3) the PML algorithm generally deals better with noise
than the ML algorithm except for the Floor object. This
is visible by comparing the o,/clean columns in Table I,
which show the performance of each algorithm on noisy data
over its performance on clean data. Notice, however that the
values in the o,,/clean column are greater than unity, meaning
the score of the map on the noisy data is better than that on
the clean data, though the opposite is expected. The reason
for this discrepancy is the manner in which the performance
metric works. Adding noise to the data increases its entropy,
meaning more chances that voxels the algorithm would have
left empty in the clean case would become occupied now.
If these voxels happen to be ones that should, according to
truth data, be occupied, this will increase the score of the
map given the metric’s heavy weight on true positives. This
is one of the downfalls of this metric, however, this metric is
still useful for comparing the performance of the PML and
ML algorithms.

4) the PML algorithm generally outperforms the ML
algorithm when using sparse data, except for the Hill case.
This can be seen by comparing the clean/DS rows, which
show the performance of the clean, dense map over that of
the sparse map.

In addition, from the bottom two plots in Figure 4 it is
easy to see that the PML algorithm is able to generate a
more populated and conservative surface map than the ML
algorithm. Notice that both surface maps were generated
from the same data, yet the ML algorithm is not quite able
to produce a tunnel-like object. In the limit, as the number of
measurements taken is increased, the ML algorithm is able to
provide a more populated representation of its environment;
however, along with an increase of measurements comes an
increase in computation and in time required to produce the
map.
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Fig. 4. Experimental results for mapping Tunnel object. PML surface map
for tunnel object at o = 0.15 (top) and for o, = 0.015 (medium). ML
surface map for v = 0.025 (bottom).

IV. CONCLUSIONS

This paper develops a Probabilistic Multi-Level (PML)
terrain map using formal probability methods to better and
more accurately model complex environments. This algo-
rithm was implemented and validated using a mobile robotic
testbed through experiments on four generalized represen-
tative objects. Experimental results were then compared to
those of a benchmark ML surface mapping algorithm and
a truth set of data. The results show that PML algorithm
was generally able to outperform the ML algorithm in most
cases. Under some circumstances, the performance of the
PML algorithm was overtaken by that of the ML algorithm,
such as those of the Wall object. The results also point
out that the PML algorithm is better at handling noise
in the measurements than the ML algorithm. Further, the
experiments show that the ML algorithm performance drops
more significantly when dealing with sparse data than the

PML algorithm. Visual inspection of the results give a better
picture at the performance of the PML surface map, since it is
able to produce a better populated and denser representation
of the environment with less measurements in less time and
lower computational cost. It is also noted that though in some
circumstances the PML algorithm was outperformed by the
ML, it still provides a more accurate representation in many
cases. Finally, though the PML algorithm does have a tuning
parameter o0, it does not have the same detrimental effect
that the performance parameter v has for the ML algorithm.
The o, is merely a parameter affecting the probabilistic
correlation among patches and measurement estimates. The
~ parameter dictates the way in which the robot sees the
world according to the ML algorithm because it heuristically
determines the incorporation of measurements into patches.
In some specific cases, this can be quite problematic. For
example, if a set of robots of different sizes are working
together to represent an environment, they will produce rad-
ically different representations given that their v parameters,
which are dictated by the robot’s individual height, would
be different. On the other hand, a set of different robots
working together using the PML algorithm do not have to
utilize different performance parameters. In conclusion, the
PML algorithm generally produces more accurate and more
conservative surface maps, which are more suitable for robot
navigation and cooperative exploration.
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