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Abstract— A Gaussian Sum Filter (GSF) with component
extended Kalman filters (EKF) is proposed as an approach
to localize an autonomous vehicle in an urban environment
with limited GPS availability. The GSF uses vehicle relative
vision-based measurements of known map features coupled with
inertial navigation solutions to accomplish localization in the
absence of GPS. The vision-based measurements are shown to
have multi-modal measurement likelihood functions that are
well represented as a weighted sum of Gaussian densities and
the GSF is ideally suited to accomplish recursive Bayesian state
estimation for this problem. A sequential merging technique is
used for Gaussian mixture condensation in the posterior density
approximation after fusing multi-modal measurements in the
GSF to maintain mixture size over time. The representation
of the posterior density with the GSF is compared over a
common dataset against a benchmark particle filter solution.
The Expectation-Maximization (EM) algorithm is used offline
to determine the representational efficiency of the particle
filter in terms of an effective number of Gaussian densities.
The GSF with vision-based vehicle relative measurements is
shown to remain converged using37 minutes of recorded data
from the Cornell University DARPA Urban Challenge (DUC)
autonomous vehicle in an urban environment that includes a
32 minute GPS blackout.

I. INTRODUCTION

Autonomous vehicles provide opportunities to remove
humans from operating in dangerous civilian and military
scenarios. The autonomy relies on accurate localization
of the vehicle in diverse environments, including urban
environments where absolute position information is not
available from a Global Navigation Satellite System (GNSS).
The urban environment is challenging for reliable position
estimation from GNSS signals due to multi-path reflections
and obstruction of direct path signals. In the absence of
absolute position information, autonomous vehicles rely on
dead reckoning from an inertial navigation system (INS) to
localize the vehicle. Unfortunately, small errors in the INS
solution will accumulate into large position deviations after
a few minutes, which in turn, prevents the vehicle from
localizing itself within a lane.
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The availability of recognizable street markings around
an autonomous vehicle motivates the development of map-
aided localization techniques. Syed and Cannon [1] present
Map-Aided GPS (MAGPS) where road segment information
derived from a robust map-matching technique is tightly
coupled into the GPS solution as a set of constraints. Also
addressing the problem of self-localization, Cui and Ge [2]
and Fouque and Bonnifait [3] propose techniques that tightly
couple GPS signals with a known map. Cui and Ge strictly
restrict motion to the map, while Fouque and Bonnifait treat
the road as a noisy measurement. Wijesoma [4] develops
localization in the context of simultaneous localization and
mapping (SLAM) by constraining the platform to a set of
known road segments. All of these algorithms make strong
assumptions about correlations between vehicle motion and
the known road map. Unfortunately, autonomous vehicles
are required to operate free from the strict constraints of
road maps and therefore require localization techniques that
account for this freedom of motion. The motivating example
may be a road block or disabled car that requires the
autonomous vehicle to pass on the wrong side of the road,
complete an impromptu U-turn, or drive off the road around
the obstacle.

The PosteriorPose algorithm presented by Miller and
Campbell [5] demonstrates a bootstrap particle filter (PF)
to be effective in providing map relative localization in the
absence of absolute position measurements. The technique
does not constrain the vehicle to the road, but uses vision
data of observable features in the known map for localization.
The map-aided localization problem is fundamentally multi-
modal because the vision data provides measurements of
closely-space landmarks with unknown correspondence to
the known map. This is similar to the data association
problem in SLAM where Bailey and Durrant-Whyte [6] point
out that incorrect assignment cannot be reversed and can
lead to failure of the SLAM algorithm. The problem solved
here differs from SLAM, because we have a known, accurate
map that enables prediction of data assignment mistakes that
show up as multiple modes in the measurement and posterior
densities. Additionally, the state vector is small becauseof
the known map and allows multiple modes to be maintained
in the posterior density that would be less feasible in a SLAM
approach with a large unknown map.

The PosteriorPose algorithm utilizes the bootstrap PF as



the approximate recursive Bayesian estimation algorithm to
handle nonlinear vehicle motion and multi-modal vision-
based measurement functions. The PF relies on a point mass
representation of the posterior density; Arulampalamet al.
[7] point out several drawbacks of the PF including finite
support over the posterior state space, particle degeneracy,
difficulty in selecting an appropriate importance density,and
sample impoverishment after resampling. Despite successful
real-time implementation in the DARPA Urban Challenge
(DUC) [5], the PosteriorPose algorithm suffers from these
drawbacks. The Gaussian Sum Filter (GSF) is proposed as a
solution to the map-aided localization problem to avoid the
drawbacks of the PF while handling the multiple modes of
the vision-based measurement and posterior densities.

The Gaussian Sum Filter (GSF) has been used to solve
nonlinear recursive Bayesian estimation problems since it
was introduced by Sorenson and Alspach [8], who derive
the GSF by representing the desired a priori, transition,
measurement, and posterior densities as a summation of
component Gaussians. The primary problem with the GSF is
computation intractability: the number of component Gaus-
sians grows geometrically with each iteration of the GSF.
Sorenson and Alspach recognized that a failure to manage
the number of terms would limit the utility of the GSF [9],
and proposed combining components with equal means and
covariances and eliminating terms with neglectable weights.
Salmond [10] proposed an iterative mixture component join-
ing technique that is used in this paper to avoid a growing
number of terms in the GSF.

Despite the computational challenges of the GSF, Peach
[11] and Kronhamn [12] applied the GSF to bearing-only
target tracking and each used a pruning approach to manage
the number of terms in the posterior density. Similarly, Kwok
et al. [13] used the GSF to solve the initialization problem in
bearing-only SLAM. The mixture reduction was performed
by truncation, and component Gaussians were removed based
on a sequential probability ratio test (SPRT).

The novelty of this paper is to show Salmond’s join-
ing algorithm in a GSF solves the fundamentally multi-
modal problem of localizing an autonomous vehicle with a
known map in a sparse GPS environment. The algorithm is
demonstrated on experimental data recorded from the Cornell
University DARPA Urban Challenge (DUC) vehicle [14].
Section II reviews the Gaussian Sum Filter and Salmond’s
condensation technique. Section III describes the Cornell
University DUC vehicle testbed and the specific vision based
measurements used for localization. Section IV discusses a
technique to analyze the representational efficiency of the
particle filter using EM to fit a Gaussian mixture to the
particles at each time step. Section V shows the algorithm
applied to experimental data in a GPS blackout and compares
performance of the PF [5] to the GSF algorithm on the same
dataset. Additionally, the posterior density representation for
the GSF and PF are compared over the same recorded
dataset. Finally, Section VI summarizes with conclusions
demonstrating the application of the GSF to ground-based
autonomous vehicle localization with multi-modal vision

measurements as a better representation of the posterior
density than the competing PF algorithm.

II. L OCALIZATION WITH MAP RELATIVE

MEASUREMENTS

Autonomous vehicles require precise localization for local
control and planning. The 2007 DARPA Urban Challenge
(DUC) provided a motivating example where autonomous
vehicles were required to complete a set of mock supply
missions over a 60-mile closed urban course [15]. The
vehicle is required to obey all traffic laws, including driving
in lanes and following precedent rules at intersections. The
autonomous operation demands accurate localization within
the map; GPS signal occlusions, reflections, and distortions
in the urban environment precludes reliance solely on GPS
signals. Cornell’s robot approaches these difficulties by com-
bining the Route Network Definition File (RNDF) with local
image processing to create vehicle relative measurements that
are fused into the localization solution. Cornell’s robot takes
advantage of stoplines and lane boundaries to determine the
vehicle posexk = [ek;nk;hk] at time tk, whereek andnk are
the vehicle east and north position with respect to the RNDF
center, andhk is the vehicle’s heading.

A. Review of Gaussian Sum Filtering

The Bayesian estimation paradigm desires to determine
the posterior density of the statexk given a sequence of
measurementsZK = {z0, . . . ,zk} from t = 0 to t = tk. In the
Gaussian Sum Filter (GSF), the posterior probability density
p(xk|Zk) is approximated as a sum of Gaussian densities
[16][9][8]:

p(xk|Z
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where N is the number of components in the mixture,ω i
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given as the multivariate normal densityN
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mean ˆxi

k, and covariancePi
k. The weights are constrained such

that ∑N
i=1 ω i = 1. In the limit, as the number of GaussiansN

approaches infinity and the covariancePi
k goes to the zero

matrix, the approximation in (1) can be used to represent
any probability density with arbitrarily small statistical di-
vergence [8]. To determine the Gaussian components in the
posterior density, the extended Kalman filter (EKF) [17] is
used.

The vehicle discrete time state space system is modeled
via nonlinear process and measurement functions:

xk = f (xk−1,uk−1,vk−1) (2)

zk = h(xk,M)+wk (3)

where in the process model (2),xk−1 is the state,uk−1 is the
input to the system,vk−1 is the noise on the measurement
of those inputs, calledprocess noise, all at timetk−1. In the
measurement model (3),zk is the measurement,xk is the state
andwk is the measurement noise at timetk, andM represents
the known map (RNDF).



The filter starts at timetk−1 with an initial Ng term
Gaussian mixture representing the a priori probability density
of the statexk−1:

p(xk−1|Z
k−1) ≈

Ng

∑
i=1

ω i
k−1 ·N

{

xk−1; x̂i
k−1,P

i
k−1

}

(4)

whereZk−1 represents any a priori information in the system
at initialization. Our development fixesNg, the number of
components in the approximation of the posterior density,
as a function of time, but in general this could vary. The
prediction and update steps of the GSF [8] lead to a posterior
density at tk with NT = NgNvNw terms in the Gaussian
mixture approximation:

p(xk|Z
k) ≈

NgNvNw

∑
r=1

ω r
k ·N {xk; x̂

r
k,P

r
k} (5)

whereω r
k is the weight on the mixture component,{x̂r

k,P
r
k} is

the one-step ahead updated state and error covariance from
the EKF [17], Nv is the number of terms in the Gaussian
mixture of the transition probability density, andNw is the
number of terms in the measurement likelihood Gaussian
mixture .

The MMSE estimate can now be computed for the state
and state error covariance as a metric for evaluation, although
it is not necessary for the GSF itself:

x̂kMMSE =
NT

∑
r=1

ω r
k · x̂

r
k (6)

PkMMSE =
NT

∑
r=1

ω r
k

[

Pr
k +(x̂r

k− x̂kMMSE)(x̂r
k− x̂kMMSE)T]

(7)

The drawback of the GSF is clear: as time moves fromtk−1

to tk the number of components in the Gaussian mixture
representing the posterior increases fromNg to NT = NgNwNv

components. The number of Gaussian components grows
in time for the GSF. Therefore, a condensation technique
is required to reduce the number of terms representing the
posterior fromNT = NgNvNw to Ng so the cycle can begin
again.

B. Gaussian Mixture Condensation

The objective of condensation is to represent a Gaussian
mixture with fewer components, but minimize the statistical
difference between the full and reduced probability density
representations. Salmond [10] proposed an iterative first and
second moment preserving merging of components based on
joining or clustering. The decision on which components to
merge is based on anL2-norm metric.

The joining technique proposed by Salmond [10] sequen-
tially merges the two components that are most similar as
defined by the metric (dropping the time indexk for clarity):

di j =
ω iω j

(ω i +ω j)

(

x̂i − x̂ j)T
P−1

MMSE

(

x̂i − x̂ j) (8)

where PMMSE is the overall mixture covariance computed
as in (7). The condensation algorithm proposed in [10] is
performed at each time step in the recursive GSF.

III. A UTONOMOUSVEHICLE TESTBED

The experimental data analyzed with the GSF was col-
lected using Cornell University’s autonomous Chevrolet
Tahoe [14], shown in Figure 1.
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Fig. 1. Cornell University’s autonomous Chevrolet Tahoe, equipped
with GPS, inertial navigation, and vision-based lane sensing, line sensing,
and stopline detection. The Tahoe is shown here on Cornell University’s
autonomous vehicle test course at the Seneca Army Depot in Romulus, NY.

A. Vehicle Prediction

The vehicle statexk = [ek;nk;hk] is defined with respect
to the map center, whereek and nk are the position in the
map, andhk is the heading. The GSF requires predicting
the previous posterior density (4) forward to generate the
predicted density for measurement fusion. The transition
probability density is well represented with a single Gaussian
density,Nv = 1, because the high update rate of the odometry
information results in very small nonlinearities during state
prediction.

B. Absolute Position Measurements

The tightly coupled GPS / INS system provides absolute
position measurementszak that are used to update the vehicle
state estimate. The measurement likelihood for the absolute
position measurements is well modeled as a single Gaussian
given the mean ¯xq

k of the qth component in the predicted
Gaussian mixture forq∈ [1,NgNv]:

p(zak|x̄
q
k) ∼ N

{

zak; x̄
q
k,Raak

}

(9)

whereRaak is the covariance of the absolute position mea-
surement at timetk. Unfortunately, just as in [5], the absolute
position estimates generated via the recursive information
filter are correlated from one time step to the next. To account
for this autocorrelation, the measurements are whitened by
augmenting the state with east and north GPS biasesβk =
[βek,βnk] that have the following dynamics:

βk = λβk−1 +vβk−1
(10)

whereλ = exp(−∆T/Tb) accounts for the bias’s autocorre-
lation time Tb during the time interval∆T = tk − tk−1, and
vβk−1

∼ N (0,Qββ ). The addition of the bias terms now
enables the assumption that the likelihood function of the



absolute position information to be Gaussian and white given
the qth component of the predicted density:

p(zak|x̄
q
k,β

q
k ) ∼ N

{

zak; x̄
q
k +β q

k ,Raak

}

(11)

C. Map Relative Position Measurements

Unlike absolute position measurements, relative position
measurements are not straightforward projections of the ve-
hicle position. Instead, the measurements are accurate ranges
to nearby stoplines or distances from lane boundaries relative
to the vehicle. The relative measurements are combined
with the known map to generate weak absolute position
information that is fused into the global state estimate. The
relative measurements generated from the vehicle cameras
allow the vehicle to maintain a global estimate in the absence
of absolute position measurements.

1) Stopline Measurements:The first relative position
measurement comes from the stopline camera that detects the
range from the vehicle to a stopline in the camera field-of-
view. The measurement likelihood for the stopline detection
is given by a single Gaussian as:

p(zsk|x̄
q
k,M) ∼ N (zsk; z̄

q
sk
,Rssk) (12)

wherez̄q
sk is the Euclidean distance from theqth component

of the predicted density to the nearest stopline in the map
M.

2) Lane Offset Measurements:The second type of relative
position measurement comes from the lane finding system
that detects bounding lines in the vision image. The mea-
surementzok is the perpendicular distance from the detected
lane boundaries and the camera heading with respect to
the occupied lane. The challenge in incorporating the lane
offset measurement is that the vision processing algorithms
generate errors that are not well-modeled with a single
Gaussian. Instead, the measurement likelihood function is
best represented as sum of Gaussians, making it ideal for use
in the GSF. The different components of the measurement
likelihood come from the different lane detection modes
that arise in the vision processing algorithm. There are six
different modes of detection by the lane-finding algorithm:
detecting the correct lane; detecting the lane to the left ofthe
true lane; detecting the lane to the right of the true lane; the
combination of the left and correct lane; the combination of
the right and correct lane, and the sixth is the combination
of the left, correct, and right lane. The key insight with
these uncertainties is that when conditioned on the specific
detection mode, the measurement likelihood is well-modeled
as a single Gaussian:

p(zl
ok
|x̄q

k,µl ,M) ∼ N {zl
ok

; z̄r
k,R

l
ook

} (13)

whereµl indicates thel th measurement mode, and ¯zr
k is the

predicted measurement given ther th component mixture for
r ∈ [1,NgNvNw] with respect to the mapM. The overall
measurement likelihood function for the vision system is
given by the Gaussian mixture:

p(zok|xk,M) ∼
Nw=6

∑
l=1

γ l
k ·N {zl

ok
; z̄r

k,R
l
ook

} (14)

whereγ l
k is the probability of thel th detection mode.

D. Measurement Update and Condensation

The system can now update theNg term predicted density
with absolute position, stopline and lane offset measurements
using standard EKF equations [17] and the posterior density
(5) is a Gaussian mixture. The algorithm expands the number
of components in the Gaussian mixture until condensation is
performed. In the implementation discussed here, the high
rate odometry data is used as a time synchronizer. The GSF
is allowed to run asynchronously between odometry mea-
surements and expands the number of Gaussian components
in the posterior density between odometry updates. Before
each new odometry update condensation is performed. This
allows a variable number of terms to represent the posterior
density before condensation.

The number of components in the posterior density after
condensation must be less than or equal to the number of
components in the original mixture before prediction to avoid
an exponentially growing number of Gaussians. The number
of components should be enough to accurately represent a
multi-modal density, but not too many such that they are
representing the same information. For this paper, a fixed
number of termsNg = 5 is used to represent the posterior
density after condensation. This value was determine by run-
ning the filter withNg ∈ [1,10] and observing a diminishing
performance improvement forNg > 5.

IV. EFFECTIVE NUMBER OF GAUSSIANS

Following condensation, regardless of the technique se-
lected, the GSF approximates the posterior density as a
weighted sum of Gaussians. However, the PF implementation
represents the posterior density as a discrete set of weighted
samples. In an effort to evaluate the accuracy and applica-
bility of the GSF, an off-line fitting procedure is run where
the PosteriorPose PF [5] samples at each time step are fit
to a Gaussian mixture using the Expectation-Maximization
(EM) algorithm [18]. The EM algorithm is initialized using
the K-Means clustering technique [18]. The EM algorithm
is used along with the Bayesian Information Criterion (BIC)
[18] to determine the effective number of Gaussians in the
PF posterior samples. This idea of fitting the particle filter
data to a Gaussian mixture is similar to Kotecha and Djuric’s
Gaussian Particle Filter [19] where the particles at each time
step are approximated with a Gaussian density that is used
for resampling.

V. EXPERIMENTAL RESULTS

A. GSF Localization Performance

The GSF for localization was evaluated using Cornell
University’s autonomous vehicle driving on a test course. The
test course consists of several miles of accurately surveyed
roads, accurately painted road lines / stoplines on certainroad
segments, and segments with no road lines; an overhead view
of the course is shown in Figure 2.
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Fig. 2. Overhead view of a portion of Cornell’s autonomous test site, which
consists of road segments and stoplines. An integrated inertial navigation
solution overlaid on the map shows the degradation of vehiclepose estimates
in the absence of additional localization information such as GPS or map
information.

Experimental data was collected for 37 minutes in an area
with a clear view of the sky and provided continuous collec-
tion of OmniSTAR high precision differential (HP) correc-
tions signal, accurate to 10 cm, which is used as ground truth;
neither the PF nor GSF has access to this signal. GPS signals
are artificially withheld in order to simulate a GPS blackout.
The tests were performed driving at city speeds up to 30
mph (13.4 m/s). The integrated INS solution from this data,
shown overlaid on the road network in Figure 2, diverges
significantly from the road and demonstrates the need for
relative position measurements to maintain accurate global
positioning in an extended GPS blackout. To demonstrate
the power of relative landmark measurements, the GSF is
used to estimate the global east and north positions, these
estimates are compared against the truth data to compute
position errors,Ek = ||[eHPk,nHPk]

T − [êGSFk − n̂GSFk]
T ||, at a

rate of 10 Hz. All of the analysis included estimating GPS
biases to improve the position estimate over the time when
the GPS signals are available.

After a 6 minute stationary initialization period during
which GPS measurements are available, the GSF estimates
the global position with no absolute position measurements.
The GSF remains converged during the entire blackout, has
a maximum error of 6 m, which occurs after maneuvering
through an intersection, and an average error of 1.17 m.

The GSF’s state estimates are also compared to Miller
and Campbell’s [5] PosteriorPose PF algorithm using 2000
particles run on the same data. The position error for each
of the algorithms is shown over the entire 37 minute run
in Figure 3. There are times where each algorithm performs
better than the other, and the PosteriorPose PF algorithm has
a maximum error of 11.0 m, again after exiting a turn, and
an average error of 1.85 m.

The PF error at each time stepEPF
k is substracted from the

GSF error at each time stepEGSF
k to create a difference in

error ∆k = EPF
k −EGSF

k . On average, over the entire run, the
GSF performs̄∆ = 0.67 m better than the PF. When a paired
T-test is performed, the 0.67 m average better performance
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Fig. 3. GSF and Particle filter both remain converged over the entire 37
minute course.

is statistically significant at thep = 0.05 level. In fact, the
T-test concludes the GSF outperforms the PF over the 37
minute run by at least 0.62 m at the 5% significance level.

An interesting area of comparison between the GSF and
PF is when the autonomous vehicle approaches and com-
pletes a right turn. This is a particularly challenging case
for localization, because of sparse map information and
uncertainty associated with the lane of the new road segment
the vehicle occupies. Figure 4 shows the area 1970 seconds
into the data capture (1590 seconds after GPS blackout).
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Fig. 4. The autonomous vehicle makes a right turn and the PosteriorPose
particle filter converges to the incorrect lane, while the GSF is able to
converge to the correct lane. The PF remains diverged until observing a
stopline at 2045 seconds.

The PF fails to maintain an accurate representation of the
posterior density as the vehicle moves through the corner,
and the PF position estimate converges to the incorrect lane
after the turn. The PF remains diverged until encountering
the stopline at the end of the road segment (62 seconds after
exiting the corner).

B. Particle Filter Effective Number of Gaussians

Following the description in Section IV, the EM algorithm
is run offline over the stored PF data in order to estimate the
effective number of Gaussians in the posterior density at each
time step. The EM algorithm is run to convergence for each
K-term Gaussian mixture, whereK ∈ [1,15]. The BIC is used



to evaluate whichK-term Gaussian mixture best represents
the posterior particles. The EM algorithm is run 100 times
with different initial means and covariances for each of the
K-terms in the Gaussian mixture in an attempt to ensure
the algorithm is finding a global minimum at convergence.
The number of occurrences where the posterior particles
are best represented with aK-term Gaussian mixture is
shown in Figure 5. The average effective number of Gaussian
densities in the particle filter posterior density is 4, despite
the particle filter using 2000 particles. Further analysis of
the effective number of Gaussian densities revealed that
the GPS bias estimates (10) augmented to the East, North,
Heading state vector accounted for up to 5 additional mixture
components needed to represent the posterior density. The
posterior density is well represented by a relatively small
term Gaussian mixture at each sample in the collected data.
This compactness explains how the GSF withNg = 5 terms in
the posterior density after condensation is able to outperform
the PF with 2000 particles.

2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r 

of
 O

cc
ur

re
nc

es
 in

 D
at

a 
C

ol
le

ct
io

n

Effective Number of Gaussians (K)

Fig. 5. The effective number of Gaussian densities in the particle filter
data over the entire 37 minute data collection. The particle filter is using
2000 particles to represent aK-term Gaussian mixture with fewer than 6
components over much of the data collection.

VI. CONCLUSION

A Gaussian Sum filter was developed to perform localiza-
tion using multi-modal vision measurements in the absence
of GPS. The GSF uses a simple condensation technique to
maintain the number of Gaussian components in the posterior
density over time. The GSF remains converged with a precise
global position estimate over an extended 32 minute GPS
blackout. The GSF is successful in estimating the global
position due to accurate representation of the multi-modal
likelihood function that arises from the vision processing
algorithms. The urban localization problem has posterior
densities that are demonstrated to be well-represented with a
small term Gaussian mixture, and adds to the representational
appropriateness of the GSF. Data collected with the Cornell
University autonomous vehicle shows the ability of the
GSF to outperform the particle filter in terms of MMSE
accuracy and representational appropriateness for the multi-
modal localization problem.
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