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Abstract— A Gaussian Sum Filter (GSF) with component The availability of recognizable street markings around
extended Kalman filters (EKF) is proposed as an approach an autonomous vehicle motivates the development of map-
to localize an autonomous vehicle in an urban environment 5iqaq |ocalization techniques. Syed and Cannon [1] present

with limited GPS availability. The GSF uses vehicle relative . . .
vision-based measurements of known map features coupled with Map-Aided GPS (MAGPS) where road segment information

inertial navigation solutions to accomplish localization in the derived from a robust map-matching technique is tightly
absence of GPS. The vision-based measurements are shown tocoupled into the GPS solution as a set of constraints. Also
have multi-modal measurement likelihood functions that are addressing the problem of self-localization, Cui and Ge [2]
well represented as a weighted sum of Gaussian densities and and Fouque and Bonnifait [3] propose techniques that tightl
the GSF is ideally suited to accomplish recursive Bayesian state - - . .
estimation for this problem. A sequential merging technique is couple GPS signals with a knpwn map. Cui and G_e _strlctly
used for Gaussian mixture condensation in the posterior density estrict motion to the map, while Fouque and Bonnifait treat
approximation after fusing multi-modal measurements in the the road as a noisy measurement. Wijesoma [4] develops
GSF to maintain mixture size over time. The representation |ocalization in the context of simultaneous localizatiorda

of the posterior density with the GSF is compared over a mapping (SLAM) by constraining the platform to a set of
common dataset against a benchmark particle filter solution. .

The Expectation-Maximization (EM) algorithm is used offline known rqad segments. Al (_)f these algorlthm_s make_strong
to determine the representa’[iona| efficiency of the partide aSSUmpnons about Correlat|0ns betWeen Veh|C|e motion and
filter in terms of an effective number of Gaussian densities. the known road map. Unfortunately, autonomous vehicles
The GSF with vision-based vehicle relative measurements is gre required to operate free from the strict constraints of
shown to remain converged using37 minutes of recorded data 444 maps and therefore require localization techniquas th

from the Cornell University DARPA Urban Challenge (DUC) t for this freed f moti Th tivati |
autonomous vehicle in an urban environment that includes a &ccountior this ireedom of motion. The molivating eéxampie

32 minute GPS blackout. may be a road block or disabled car that requires the
autonomous vehicle to pass on the wrong side of the road,
I. INTRODUCTION complete an impromptu U-turn, or drive off the road around

the obstacle.

Autonomous vehi(,tles.provide opport.u.n-ities to reMOVe The posteriorPose algorithm presented by Miller and
humans from operating in dangerous civilian and militarys,m el [5] demonstrates a bootstrap particle filter (PF)
scenarios. .The.aut(.)nomy rell_es on accurate ]003“23“({8 be effective in providing map relative localization ireth
of the vehicle in diverse environments, including urban,gence of absolute position measurements. The technique

environments where absolute position information is NQ§,eg not constrain the vehicle to the road, but uses vision
available from a Global Navigation Satellite System (GNSS)ya¢5 of observable features in the known map for localimatio

Th? “rt,’a” environment _is challenging for .reliable pOSi,tioﬁ'he map-aided localization problem is fundamentally raulti
estimation from GNSS signals due to multi-path reflectiong,,qa| pecause the vision data provides measurements of
and obstruction of direct path signals. In the absence Qfgely.space landmarks with unknown correspondence to
absolute position information, autonomous vehicles rely oy known map. This is similar to the data association
dead_ reckoning _from an inertial navigation syste_m (INS) t‘broblem in SLAM where Bailey and Durrant-Whyte [6] point
Iocal!ze th_e vehicle. Unfgrtunately, smg!l errors in theSIN 5t that incorrect assignment cannot be reversed and can
solution \{VI” accumL_JIate_ into large position deV|at|_on$eaf lead to failure of the SLAM algorithm. The problem solved
a few minutes, which in turn, prevents the vehicle from,g e giffers from SLAM, because we have a known, accurate
localizing itself within a lane. map that enables prediction of data assignment mistakes tha
. . show up as multiple modes in the measurement and posterior
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the approximate recursive Bayesian estimation algorithm tmeasurements as a better representation of the posterior

handle nonlinear vehicle motion and multi-modal visiondensity than the competing PF algorithm.

based measurement functions. The PF relies on a point mass

representation of the posterior density; Arulampaleinal. Il. L OCALIZATION WITH MAP RELATIVE

[7] point out several drawbacks of the PF including finite MEASUREMENTS

support over the posterior state space, particle deggnerac Autonomous vehicles require precise localization for loca

difficulty in selecting an appropriate importance densityd control and planning. The 2007 DARPA Urban Challenge

sample impoverishment after resampling. Despite suogess{DUC) provided a motivating example where autonomous

real-time implementation in the DARPA Urban Challengevehicles were required to complete a set of mock supply

(DUC) [5], the PosteriorPose algorithm suffers from thesenissions over a 60-mile closed urban course [15]. The

drawbacks. The Gaussian Sum Filter (GSF) is proposed asehicle is required to obey all traffic laws, including drigi

solution to the map-aided localization problem to avoid thén lanes and following precedent rules at intersectiong Th

drawbacks of the PF while handling the multiple modes cdutonomous operation demands accurate localizationrwithi

the vision-based measurement and posterior densities. the map; GPS signal occlusions, reflections, and distartion
The Gaussian Sum Filter (GSF) has been used to solirethe urban environment precludes reliance solely on GPS

nonlinear recursive Bayesian estimation problems since signals. Cornell’s robot approaches these difficultiesdoyc

was introduced by Sorenson and Alspach [8], who deriveining the Route Network Definition File (RNDF) with local

the GSF by representing the desired a priori, transitiofimage processing to create vehicle relative measurenteatts t

measurement, and posterior densities as a summation ayé fused into the localization solution. Cornell’s robaites

component Gaussians. The primary problem with the GSF &lvantage of stoplines and lane boundaries to determine the

computation intractability: the number of component Gausrehicle posex = [e; nk; hy] at timety, wheree and ng are

sians grows geometrically with each iteration of the GSRhe vehicle east and north position with respect to the RNDF

Sorenson and Alspach recognized that a failure to managenter, anchy is the vehicle's heading.

the number of terms would limit the utility of the GSF [9], ) ] -

and proposed combining components with equal means afid Review of Gaussian Sum Filtering

covariances and eliminating terms with neglectable weight The Bayesian estimation paradigm desires to determine

Salmond [10] proposed an iterative mixture component joirthe posterior density of the statg given a sequence of

ing technique that is used in this paper to avoid a growingieasurementgX = {z,...,z} fromt =0 tot =ty. In the

number of terms in the GSF. Gaussian Sum Filter (GSF), the posterior probability dgnsi
Despite the computational challenges of the GSF, Peaglix,|Z¥) is approximated as a sum of Gaussian densities

[11] and Kronhamn [12] applied the GSF to bearing-only16][9][8]:

target tracking and each used a pruning approach to manage N

the number of terms in the posterior density. Similarly, kwo p(xk|Zk) ~ Zl“*i"”{x";f‘i" pl'(} 1)

et al.[13] used the GSF to solve the initialization problem in =

bearing-only SLAM. The mixture reduction was performed . : . i

by truncation, and component Gaussians were removed basvgéfre’\l 'S the num_ber of components in the mixtus,

on a sequeniial probability ratio test (SPRT) 1S he weight ass_omgted with th& Ggusmanxcomponent,
The novelty of thi s to show Salmond's ioinJIVEN s the multivariate normal density {xk;x{OP,'(.} with

: velly of This paper IS 10 show saimonds Join r, and covarianc€!. The weights are constrained such

ing algorithm in a GSF solves the fundamentally mult|—mheanx,\i<’ aril h I'k . hg ber of )

modal problem of localizing an autonomous vehicle with zg atZi:lhw - 1f Ipt € |m|r:, ast € humber o GaL;]sszs

known map in a sparse GPS environment. The algorithm Iasppr_oac es In mﬂy_ anq t © covariangg goes 1o the zero

demonstrated on experimental data recorded from the Oomgatnx, reb_?pp:joxnn_atlon_ rlln (t) ca_r|1 be uTIed tq rligjresent

University DARPA Urban Challenge (DUC) vehicle [14]. ny probabiity density with arbitrarlly small statistical-

Section Il reviews the Gaussian Sum Filter and Salmondysergence [8]. To determine the Gaussian components in the

condensation technique. Section IIl describes the Cornéuipzzjenor density, the extended Kalman filter (EKF) [17] is

University DUC vehicle testbed and the specific vision base . : . .
o : . The vehicle discrete time state space system is modeled

measurements used for localization. Section IV discusses a : S

) : . via nonlinear process and measurement functions:
technique to analyze the representational efficiency of the
particle filter using EM to fit a Gaussian mixture to the X = f (X_1,Uk_1,Vk_1) ()
paru_cles at each time step. _Secuon V shows the algorithm 2 = h (%, M) + Wi 3)
applied to experimental data in a GPS blackout and compares
performance of the PF [5] to the GSF algorithm on the samghere in the process model (21 is the statey,_; is the
dataset. Additionally, the posterior density represémiafior  input to the systemyy_; is the noise on the measurement
the GSF and PF are compared over the same recordefdthose inputs, callegrocess noiseall at timety_;. In the
dataset. Finally, Section VI summarizes with conclusionsmeasurement model (3) is the measuremen is the state
demonstrating the application of the GSF to ground-basexhdwy is the measurement noise at titpeandM represents
autonomous vehicle localization with multi-modal visionthe known map (RNDF).



The filter starts at timet,_; with an initial Ny term Ill. AUTONOMOUSVEHICLE TESTBED
Gaussian mixture representing the a priori probabilitysitgn The experimental data analyzed with the GSF was col-
of the statex_1: lected using Cornell University’s autonomous Chevrolet

Ng _ _ Tahoe [14], shown in Figure 1.
D(Xk71|Zk71)N_Z@fl'*/’/{xkfl;ﬁkfrpllfl} )
=

whereZk-1 represents any a priori information in the system
at initialization. Our development fixeldy, the number of e
components in the approximation of the posterior density,
as a function of time, but in general this could vary. The
prediction and update steps of the GSF [8] lead to a posterior
density atty with Ny = NgNyNy, terms in the Gaussian
mixture approximation:

NgNyNy
P(x(Z¥) ~ 2 - A {%6 R, P} (5)
r=
wherea is the weight on the mixture componef&, R } is
the one-step ahead updated state and error covariance from
the EKF [17], Ny is the number of terms in the Gaussian
mixture of the transition probability density, amd, is the Fig. 1. Cornell University’s autonomous Chevrolet Tahoevipged

: ‘Lali - with GPS, inertial navigation, and vision-based lane sepdine sensing,
number of terms in the measurement likelihood Gaussi d stopline detection. The Tahoe is shown here on Corndlletsity’s

mixture . autonomous vehicle test course at the Seneca Army Depot in RemiuY.
The MMSE estimate can now be computed for the state

and state error covariance as a metric for evaluation, @dtho A. \ehicle Prediction

it is not necessary for the GSF itself:

The vehicle stateq = [ex; ng; hy is defined with respect

Nr oo to the map center, wherg and ng are the position in the
Xumse = Q. @k %k (6)  map, andhy is the heading. The GSF requires predicting
r,\TT ! the previous posterior density (4) forward to generate the
predicted density for measurement fusion. The transition

_ r Pr+ TR % T 7
Funse lek[ et (e Rse) R~ Ramse) '] () probability density is well represented with a single Géarss

The drawback of the GSF is clear: as time moves ftprg density,N, = 1, because the high update rate of the odometry

to t, the number of components in the Gaussian mixtur'@forme}tion results in very small nonlinearities duringtst
representing the posterior increases fiiggrto Ny = NgNy Ny prediction.

components. The number of Gaussian components grows Apsolute Position Measurements

@n time_ for the GSF. Therefore, a condensation technique The tightly coupled GPS / INS system provides absolute
'S r(taql_ure? to redﬂcﬁ the nL:mbNer of ttrclerms rltapreserl;tlng trf.ly%sition measurementg, that are used to update the vehicle
posi(re]rlor romNr = NgNvNw t0 Ng S0 the cycle can begin state estimate. The measurement likelihood for the atesolut
again. position measurements is well modeled as a single Gaussian
B. Gaussian Mixture Condensation given the mean(kq_of the g component in the predicted

The objective of condensation is to represent a Gaussi&tRussian mixture fog & [1, NgNy/:
mixture with fewer components, but minimize thg_statisticg p(zak|)—(kﬂ) ~ Jy{zak;xﬂ7Raa(} 9)
difference between the full and reduced probability densit ) ) N
representations. Salmond [10] proposed an iterative first aWhere Raa is the covariance of the absolute position mea-
second moment preserving merging of components based $Hfement at timé. Unfortunately, just as in [3], the absolute
joining or clustering. The decision on which components t§0sition estimates generated via the recursive informatio
merge is based on drf-norm metric. filter are correlated from one time step to the next. To actoun

The joining technique proposed by Salmond [10] sequeﬁor this autocorrelation, the measurements are whitened by
tially merges the two components that are most similar 2&ugmenting the state with east and north GPS bifikes
defined by the metric (dropping the time indefor clarity):  [Be.Bn] that have the following dynamics:

w o Bc=ABk-1+Vg , (10)

di= 2 (f-s)T Pl _(F-% 8

RN ( )" Pse ( ) ® whereA = exp(—AT /Tp) accounts for the bias’s autocorre-
where Bymse is the overall mixture covariance computediation time T, during the time intervaAT =t —tx_;, and
as in (7). The condensation algorithm proposed in [10] isg_, ~ .47(0,Qgg). The addition of the bias terms now
performed at each time step in the recursive GSF. enables the assumption that the likelihood function of the



absolute position information to be Gaussian and whitergive/vhereyl'( is the probability of thd™ detection mode.
the " component of the predicted density:

P(Za X B) ~ A {Zai K+ B Rea ) (11)
C. Map Relative Position Measurements

D. Measurement Update and Condensation

The system can now update tNg term predicted density
with absolute position, stopline and lane offset measunésne

Unlike absolute position _measurements_, re_Iative positiogsmg standard EKF equations [17] and the posterior density
measurements are not straightforward projections of the VE5) is a Gaussian mixture. The algorithm expands the number

hicle position. Instead, the measurements are accurajesanyf components in the Gaussian mixture until condensation is
to nearby stoplines or distances from lane boundariesvelat performed. In the implementation discussed here, the high

to the vehicle. The relative measurements are combinggie odometry data is used as a time synchronizer. The GSF
with the known map to generate weak absolute positioR jlowed to run asynchronously between odometry mea-
information that is fused into the global state estimatee Thy,rements and expands the number of Gaussian components
relative measurements generated from the vehicle camefgsihe posterior density between odometry updates. Before
allow the vehicle to maintain a global estimate in the abseng;ch new odometry update condensation is performed. This

of absolute position measurements. _ . allows a variable number of terms to represent the posterior
1) Stopline MeasurementsThe first relative position density before condensation.

measurement comes from the stopline camera that detects th@rhe number of components in the posterior density after
range from the vehicle to a stopline in the camera field-of

e, Th likelihood for th line detecti condensation must be less than or equal to the number of
VIew. the mea_surement ixelinood for the stopline detec IOcomponents in the original mixture before prediction toidvo
is given by a single Gaussian as:

an exponentially growing number of Gaussians. The number
p(zSK|x*'|i,M) ~ JV(Z&K;Z_EL,RSS() (12) of components should be enough to accurately represent a

here is the Euclid dist f e ‘ multi-modal density, but not too many such that they are
wherezg, is the Euclidean distance from componen representing the same information. For this paper, a fixed

of the predicted density to the nearest stopline in the M3l mber of termsNy = 5 is used to represent the posterior

M. . . . !
. density after condensation. This value was determine by run
2) Lane Offset Measurementghe second type of relative ning the filter withNg € [1,10] and observing a diminishing

osition measurement comes from the lane finding system .
?hat detects bounding lines in the vision image. The meg_erformance improvement fdg > 5.
surementz, is the perpendicular distance from the detected
lane boundaries and the camera heading with respect to
the occupied lane. The challenge in incorporating the lane Following condensation, regardless of the technique se-
offset measurement is that the vision processing algosthnected, the GSF approximates the posterior density as a
generate errors that are not well-modeled with a singleeighted sum of Gaussians. However, the PF implementation
Gaussian. Instead, the measurement likelihood function iepresents the posterior density as a discrete set of vegight
best represented as sum of Gaussians, making it ideal for us@mples. In an effort to evaluate the accuracy and applica-
in the GSF. The different components of the measuremehility of the GSF, an off-line fitting procedure is run where
likelihood come from the different lane detection modeshe PosteriorPose PF [5] samples at each time step are fit
that arise in the vision processing algorithm. There are sito a Gaussian mixture using the Expectation-Maximization
different modes of detection by the lane-finding algorithm(EM) algorithm [18]. The EM algorithm is initialized using
detecting the correct lane; detecting the lane to the lefi@f the K-Means clustering technique [18]. The EM algorithm
true lane; detecting the lane to the right of the true lane; ths used along with the Bayesian Information Criterion (BIC)
combination of the left and correct lane; the combination ofL8] to determine the effective number of Gaussians in the
the right and correct lane, and the sixth is the combinatioRF posterior samples. This idea of fitting the particle filter
of the left, correct, and right lane. The key insight withdata to a Gaussian mixture is similar to Kotecha and Djuric's
these uncertainties is that when conditioned on the specifigaussian Particle Filter [19] where the particles at eauvle ti
detection mode, the measurement likelihood is well-matlelestep are approximated with a Gaussian density that is used
as a single Gaussian: for resampling.

P20, X5 11, M) ~ A {7 7, Rog, } (13)

where  indicates thd'" measurement mode, afl is the
predicted measurement given tHe component mixture for

IV. EFFECTIVENUMBER OF GAUSSIANS

V. EXPERIMENTAL RESULTS

A. GSF Localization Performance

r € [1,NgNyNy] with respect to the magM. The overall The GSF for localization was evaluated using Cornell
measurement likelihood function for the vision system idJniversity’s autonomous vehicle driving on a test courdee T
given by the Gaussian mixture: test course consists of several miles of accurately sudveye

Ny=6 roads, accurately painted road lines / stoplines on certaic
P(Zo X M)~ S W A {23 3 Roo } (14) segments, and segments with no road lines; an overhead view
=1 of the course is shown in Figure 2.
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Fig. 2. Overhead view of a portion of Cornell’s autonomous $ée, which ~ Fig. 3. GSF and Particle filter both remain converged over titeee37
consists of road segments and stoplines. An integratedidhedvigation — minute course.

solution overlaid on the map shows the degradation of vepinde estimates

in the absence of additional localization information sushGPS or map

information. is statistically significant at the = 0.05 level. In fact, the

T-test concludes the GSF outperforms the PF over the 37
minute run by at least.62 m at the 5% significance level.

E>.<per|menta|.data was collected for. 37 minutes in an area ,, interesting area of comparison between the GSF and
with a clear view of the sky and provided continuous collec:

. . ) - . . PF is when the autonomous vehicle approaches and com-
tion of OmniSTAR high precision differential (HP) correc- bp

. . _ letes a right turn. This is a particularly challenging case
tions signal, accurate to 10 cm, which is used as ground, tru\%)S 9 b y ging

. S . r localization, because of sparse map information and
nelther_ t_h_e PF nor GSF. has access to this signal. GPS sign certainty associated with the lane of the new road segment
are artificially withheld in order to simulate a GPS blackout

. . e vehicle occupies. Figure 4 shows the area 1970 seconds
The tests were perf(_)rmed driving at C't.y speeds up to 3| to the data capture (1590 seconds after GPS blackout).
mph (134 m/s). The integrated INS solution from this data,
shown overlaid on the road network in Figure 2, diverges
significantly from the road and demonstrates the need for
relative position measurements to maintain accurate loba
positioning in an extended GPS blackout. To demonstrate
the power of relative landmark measurements, the GSF is
used to estimate the global east and north positions, thes
estimates are compared against the truth data to comput
position errorsEy = ||[enn, "HR )" — [Ecsk —Acsg ]|, at a
rate of 10 Hz. All of the analysis included estimating GPS
biases to improve the position estimate over the time when
the GPS signals are available.

After a 6 minute stationary initialization period during e

which GPS measurements are available, the GSF estimate Time (sec)
the global p03|t_|on with no abso“‘!te posmon- measurementI‘f'i . 4. The autonomous vehicle makes a right turn and the Pafese
The GSF remains converged during the entire blackout, hagticle filter converges to the incorrect lane, while theFGS able to
a maximum error of 6 m, which occurs after maneuveringonverge to the correct lane. The PF remains diverged unsiéreing a
through an intersection, and an average error.®¥ n. stopline at 2045 seconds.

The GSF's state estimates are also compared to Millgthe PF fails to maintain an accurate representation of the
and Campbell’s [5] PosteriorPose PF algorithm using 2008bsterior density as the vehicle moves through the corner,
particles run on the same data. The position error for eaethd the PF position estimate converges to the incorrect lane
of the algorithms is shown over the entire 37 minute rumfter the turn. The PF remains diverged until encountering

in Figure 3. There are times where each algorithm performge stopline at the end of the road segment (62 seconds after
better than the other, and the PosteriorPose PF algoritism heiting the corner).

a maximum error of 1D m, again after exiting a turn, and
an average error of.85 m. B. Particle Filter Effective Number of Gaussians

The PF error at each time stEﬁF is substracted from the  Following the description in Section IV, the EM algorithm
GSF error at each time stef*SF to create a difference in is run offline over the stored PF data in order to estimate the
error & = EPF— ESSF. On average, over the entire run, theeffective number of Gaussians in the posterior density et ea
GSF performdd = 0.67 m better than the PF. When a pairedime step. The EM algorithm is run to convergence for each
T-test is performed, the.67 m average better performanceK-term Gaussian mixture, whekec [1,15]. The BIC is used

Stopline
Converged to
Incorrect Lane:

rrrrr

y

3

3

Error - EPF, ECSF - (m)




to evaluate whichK-term Gaussian mixture best represents VIl. ACKNOWLEDGMENTS
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shown in Figure 5. The average effective number of Gaussian
densities in the particle filter posterior density is 4, d&sp
the particle filter using 2000 particles. Further analydis o [1]
the effective number of Gaussian densities revealed that
the GPS bias estimates (10) augmented to the East, Nortf{
Heading state vector accounted for up to 5 additional mextur
components needed to represent the posterior density. TH8
posterior density is well represented by a relatively small
term Gaussian mixture at each sample in the collected datg)
This compactness explains how the GSF Wigh=5 terms in
the posterior density after condensation is able to outperf
the PF with 2000 particles.
(5]
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Fig. 5. The effective number of Gaussian densities in theigharfilter
data over the entire 37 minute data collection. The partider fis using
2000 particles to representkrterm Gaussian mixture with fewer than 6 [12]
components over much of the data collection.

VI. CONCLUSION [13]

A Gaussian Sum filter was developed to perform localiza-
tion using multi-modal vision measurements in the absence
of GPS. The GSF uses a simple condensation technique[t8!
maintain the number of Gaussian components in the posterior
density over time. The GSF remains converged with a precise
global position estimate over an extended 32 minute GPS
blackout. The GSF is successful in estimating the globgfs]
position due to accurate representation of the multi-modaile]
likelihood function that arises from the vision processing
algorithms. The urban localization problem has posteriqgﬂ
densities that are demonstrated to be well-representéudawit
small term Gaussian mixture, and adds to the represenghtion
appropriateness of the GSF. Data collected with the Cornéﬁg]
University autonomous vehicle shows the ability of thgi9)
GSF to outperform the particle filter in terms of MMSE
accuracy and representational appropriateness for the- mul
modal localization problem.
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