High-Level Control of Modular Robots

Sebastian Castro, Sarah Koehler, Hadas Kress-Gazit
Sibley School of Mechanical and Aerospace Engineering
Cornell University, Ithaca NY
{sac77, smk269, hadaskg}@cornell.edu

Abstract— This paper discusses the creation of provably cor-
rect control for modular robots from high-level tasks expressed
using sentences in structured English. Due to the nature of
modular robots, we address problems that include requirements
on the geometry and motion characteristics of the robot; these
requirements are captured using traits in the specification that
are then used in the control generation process.

Outlined in this paper is our approach for generating all the
lower levels of control for a modular robot given the high-
level problem statement. The approach includes the use of
a configuration-gait-trait library for characterizing modular
robots and tools for populating this library such as a physics-
based simulator and gait creator. The approach is demonstrated
in simulation and with the CKBot hardware platform.

I. INTRODUCTION

One of the main challenges in robotics is programming
robots to perform complex and interesting tasks while at the
same time guaranteeing their behavior is safe and predictable.
Recently, there has been work on generating correct-by-
construction control for mobile robots from high-level spec-
ifications expressed using temporal logic (see, for example
[11, [2], [3], [4], [5]) or structured language (as in [6]).
There, the tasks usually include a specification regarding the
motion of the robot in the environment, and for some of the
approaches ([1], [5]), reactions to information obtained from
the environment through sensors.

In this paper we consider high-level tasks for chain-type
modular robots [7], [8]. Modular robots are unique because
the variety of configurations and gaits they can exhibit
allows for a richer set of tasks; one can specify not only
motion in the environment and reaction to environmental
events, but also utilize traits as descriptors of the motion
and morphology. For example, the robot can be required
to have a “narrow” configuration when traveling down a
corridor and a “low” motion profile when moving in an area
with a low ceiling such as under a table. In this paper we
address the problem of generating provably correct control
for modular robots from high-level specifications given in
structured English and containing traits that describe the
desired qualities of the motion.

II. PROBLEM FORMULATION

In order to automatically transform high-level specifica-
tions, given in structured English, into provably correct low-
level control of modular robots, we build on the work in
[11, [6], [9]. However, we also specifically address modular
robots by enriching the task space with traits as additional
requirements on morphology and gaits.

We consider a modular robot comprised of a set of
connected modules moving around an environment P. The
robot’s continuous trajectory is described as p(r) € P,Vt > 0.
The robot is capable of performing different actions such as
turning on a camera or sounding an alarm. Furthermore, we
define the configuration-gait pair g(z) € G of a robot, where
G is the set of all configuration-gait pairs. g(z) describes the
morphology of the robot and the type of motion gaits being
used at time ¢.

The required robot behavior is captured using structured
English sentences belonging to the grammar described in [6],
[10] where the basic lexicon consists of the following:

« Set of sensor names X corresponding to sensor informa-
tion the robot can obtain. We assume these are binary
sensors; that is, they can either be true or false.

o Set of region names R corresponding to regions of
interest in the workspace.

o Set of binary actions A that the robot can perform.
During robot execution, we denote the set of active
actions (actions currently being executed) as a(t) € 24
where 24 denotes the power set of A.

o Set of traits T corresponding to motion types the robot
can exhibit. We distinguish traits by adding a prefix
“T_” to each trait. For example, T _low represents con-
figurations and gaits that cause the robot to stay close
to the ground. As discussed in Section IV, we define
the mapping I': T — 29 such that I'(7;) is the set of
configuration-gait pairs that is labeled with trait 7;.

A specification S is a set of English sentences belonging
to a predefined grammar and the above lexicon. The sen-
tences, restricted to a subset of Linear Temporal Logic (LTL
[11]), can capture conditional statements (e.g. “If you are
sensing predator then visit safePlace”), safety requirements
(e.g. “Always not unsafeRegion”), non-projective locative
prepositions such as “between” and more. We refer the reader
to [6], [10] for a description of the grammar.

Problem 1: [High-level control for modular robots] Given
a modular robot operating in a known workspace P and
a high-level task S expressed in structured English using
the sets X,R,A,T, construct (if possible) a controller so
that the robot’s resulting trajectories p(¢), actions a(¢) and
motion gaits g(), satisfy the system specification S in any
admissible! environment, from any possible initial state.

'As discussed in [1], the specifications may include assumptions about
the behavior of the environment, for example “a predator cannot appear
in region Tunnel”. An admissible environment is one that satisfied all the
assumptions.

III. BACKGROUND
A. High-Level Control for Non-Reconfigurable Robots

The high-level control approach outlined in Section II can
be summarized by the following steps:

1) A discrete abstraction of the robot’s motion, sensors
and actuators is created by representing the workspace
as a graph where each node corresponds to a region
(the set R as mentioned in Section II) and by abstract-
ing the sensor information the robot can collect at
runtime and actions the robot can perform into binary
propositions (the sets X and A respectively).

2) The required task is described using a subset of LTL
known as GR(1) [12] or using the structured English
grammar that is then automatically parsed into LTL
formulas.

3) An automaton satisfying the LTL formula is synthe-
sized if the task can be done. Section IV-B provides
more details regarding the automaton.

4) The automaton is continuously executed by the robot
by calling basic controllers that continuously imple-
ment every discrete transition in the automaton. For
example, moving from a state where the proposition
room is true to a state where roomy is true will require
calling a controller capable of driving the robot from
room 1 to room 2.

Given an appropriate set of basic controllers, the resulting
hybrid controller is guaranteed to drive the robot such that
it achieves its task. In the next sections, we describe how
the task space and the resulting control can be enriched to
include traits and corresponding configurations and gaits.

The Linear Temporal Logic Mission Planning (LTLMoP
[9]) framework is a Python toolkit that allows a user to
control a simulated or physical robot from structured English
instructions. It allows the user to draw a workspace, define a
task, generate the automaton satisfying the task (if the task
can be guaranteed) and either simulate a robot or connect
to a physical robot. LTLMoP has been shown to work with
a variety of platforms including Pioneer [9] and humanoid
robots. In this work, LTLMoP was enhanced to be able to
control the motion, configuration and gaits of modular robots.

B. Modular Robots - Hardware

To demonstrate our approach, we experiment with the
Connector Kinetic roBot (CKBot) platform, developed by
Yim et. al. [13] and shown in Fig. 1. Each CKBot module
is cubic in shape and has a single degree of freedom in the
form of a servo-actuated rotating hinge. Every module is
equipped with 7 infrared receiver-transmitter pairs, or ports,
distributed over 4 of the cube faces. These ports are what
define every possible connection between two modules; in
total, there are 40 ways to connect two CKBot units.

Prior work with CKBot has dealt with single-application
locomotive gaits or with fixed-base kinematics and controls
problems. Examples of this single-application locomotion
with CKBot can be seen in dynamic rolling of a closed
loop of modules [14] or legged gaits using compliant legs

[15]. Other research has utilized CKBot for recreation of the
high degree-of-freedom arms of the PR2 robot platform [16],
where specialized wheel modules are used for locomotion.

Fig. 1. Ethernet-powered CKBot configuration with markers used by the
Vicon motion capture system to provide pose information.

C. Modular Robots - Configurations and Gaits

A modular robot configuration is a representation of
the connectivity of the modules of a robot. For CKBot
specifically, we use the port-adjacency matrix as is done in
[13]. Every configuration is then assigned different ways,
or gaits, to achieve motion. A gait can be defined as a
repeatable sequential execution of joint angle commands for
every CKBot module. For any modular robot, we describe
its motion and geometry by defining its configuration-gait
pair.

For our experiments we have two ways of representing
gaits: Periodic and Fixed gaits. A Periodic Gait represents
repeated motion of a configuration using sinusoids. Due
to the simple motion laws associated with sinusoids, we
only need to keep track of 3 parameters for each module:
Amplitude, Frequency and Phase. For one gait, and for each
module i € {0,...,n— 1} we then assign these parameters A;,
®; and ¢; such that the equation (1) describes the angular
motion 6; of each module.

0; = A;sin (it + ¢;) (D

Fixed Gaits allow for more general motion but require
more memory and computational power to execute. A fixed
gait is a collection of joint angle snapshots beginning and
ending with the same values and an associated gait execution
time f, that describes how long the robot should take to
complete one gait iteration. This structure is similar to a
Gait Control Table (GCT) as shown in [17].

911 921 o enl
6 6n ... Op

GCT = | . . . (2
Glm 62m cee enm

In equation (2) above we show a GCT as it is implemented
in matrix form. For m gait steps, 6;; corresponds to the i
reference angle command for module i. These gait steps are
then linearly interpolated at every sampled time such that the
gait is executed smoothly.

IV. APPROACH

The control generation process can be seen as containing
two phases; generation of a discrete automaton and a contin-
uous implementation of the automaton to provide continuous
control commands for the modules. For the automaton syn-
thesis, traits are regarded as robot propositions, similar to
regions and actions. Following a successful synthesis and in
order to guarantee appropriate configurations and gaits exist,
the automaton is checked for emptiness of traits as described
below. The continuous control generation process includes
choosing a configuration-gait pair according to the traits in
the automaton.

A. Traits

A trait T; is a descriptor for the motion of a modular
robot that is interesting from a high-level task perspective. It
is connected to a (possibly empty) set of configuration-gait
pairs. We define a mapping I': T — 26 such that ['(7;) is
the set of configuration-gait pairs that correspond to trait 7;.
Currently I' is defined manually by the user and we expect
to automate part of that mapping in future work.

The mapping I' is captured in a Configuration-Gait-Trait
Library. Each entry in the library corresponds to a trait
and its associated configuration-gait pairs. Whenever a con-
figuration and associated gaits are created, the appropriate
library entries are updated with the new pairs. For example,
the expression ‘Tripod.crawl’ indicates that the robot is in
the configuration called ‘Tripod’ and is using the ‘crawl’
gaits. This pair is classified with the traits ‘low’, ‘nonholo-
nomic_turning’ and ‘legged’. Table I shows some example
traits and corresponding configuration-gait pairs.

TABLE 1
SAMPLE LIST OF TRAITS AND CONFIGURATION-GAIT PAIRS
Traits Configuration-Gait Pairs
Fast Hexapod.run, Loop.roll, FoldOver.slink
Nonholonomic_Turning | Tripod.crawl, Tee.crawl, Snake.crawl, Hexapod.run
Low Tripod.crawl, Tee.crawl, Snake.crawl
Stationary Cross.foldup, Biped.splits, TeeStationary.swim
Large Hexapod.run
Legged Tripod.crawl, Hexapod.run, Biped.splits
1D_Motion Loop.roll, FoldOver.slink

B. Guaranteeing Correct Control

For a given task, assuming it is feasible (that is,
there are no contradictions or impossible requirements),
the synthesis algorithm generates an automaton & =
({X},{R,A,T},0,00,0,7) such that

o X is the set of environment propositions (sensor infor-
mation),

o {R,A,T} is the set of robot propositions (regions, ac-
tions and traits),

o O C N is the set of states,

e Qo € Q is the set of initial states,

o §: Qx2%X = Qis the transition relation, i.e., §(q, 2°) =
q' € Q where g € Q is a state and 2~ C X is the subset
of sensor propositions that are true, and

e 7: Q— 2{RAT} i5 the state labeling function where
Y(q) =Y and Y C {R,A,T} is the set of robot proposi-
tions that are true in state q.

The modular robot is guaranteed to satisfy its task only if
it can execute the generated automaton; to ensure possible
execution, the control synthesis algorithm must verify that all
possible required traits and trait combinations have a defined
configuration-gait pair associated with them. This is done by
extracting from the automaton all possible trait combinations
T* =Uy;eo{Ti € T|T; € ¥(q;)} and checking each set of traits
in T* against the configuration-gait-trait library.

Fig. 2 shows the result of the emptiness check for two sets
of specifications. On the left, the Gait Checker algorithm
discovered two combinations of traits that are empty; the
traits “holonomic” and “fast” are defined in the library,
however there is no configuration-gait pair that is both
holonomic and fast (bottom error). The combination of the
two sentences in the red box result in a possible state that has
the trait combination “holonomic”, “fast” and “stationary”
which is also empty (top error). On the right is the result of
a successfully synthesized specification.

To provide the continuous control for the modular robot,
the discrete automaton is executed by calling basic con-
trollers to provide the velocity vectors the robot must follow
to move from one region to the next. Then, the automaton
interfaces with the configuration-gait-trait library to obtain
the joint commands for the individual modules. We assume
each robot has a predefined default configuration and gait
so that if a state has no associated trait, the default is used.
For this work we assume instantaneous reconfiguration of
the robot. Thus, if the automaton has a transition g; —
q; with ¥(gi) = (rx,T1),7(q;) = (rm,T,) then the controller
will provide joint commands that will move the robot in a
configuration and gait corresponding to trait 7; along a path
that leads the robot from region 7, to r, and once the robot
reaches r,, it will instantly reconfigure to a configuration and
gait corresponding to trait 7;,.

V. EXPERIMENTAL SETUP

A. Modular Robots with LTLMoP

LTLMoP was designed so that communicating with a
physical robot is as straightforward as it is with a simulated
one. Regardless of the platform being used, the controller
generated from high-level structured English specifications
is the same. During execution, LTLMOoP receives the robot’s
pose information (either from the simulation or from local-
ization systems such as the Vicon motion capture system);
in turn, LTLMoP sends the robot a gait command. Because
modular robots have a finite number of gaits, this gait
command is a number indicating which gait the current
configuration-gait pair g(z) should use. For example, if the
‘Snake.crawl’ pair is currently active and the motion planner
needs the robot to turn left, the command sent will be to
execute the left-turning gait 2.

© © @ specification Editor - IROS11.spec

© © @ specification Editor - IROS11.spec

File Edit Run Debug Help

Env starts with false
Robot starts in Island
Always not Water and not Water2 and not Water3

If you are not sensing predator and you are not sensing prey and you are not sensing
poison then visit Meadows

If you are not sensing predator and you are not sensing prey and you are not sensing
poison then visit Dock

If you are not sensing predator and you are not sensing prey and you are sensing poison
then visit Springs

Do T_low and T_nonholonomic_turning if and only if you are in Tunnel

Do T_fast and do T_1D_motion if and only if between Island and Dock and you are not
sensing prey

If you are sensing predator then stay there
If you are sensing prey and you are not in Tunnel and you are not in between Island and
Dock then do T stationary
Do T_holonemic and T_fast if and only if you are in Meadows

Compiler Log LTL Output Workspace Decomposition

Checking for empty gaits...

WARNING: No config-gait pair for combination of traits: holonomic, stationary, fast
WARNING: No config-gait pair for combination of traits: holonomic, fast

ERROR: Specification was unrealizable.

Fig. 2.

B. Populating the Library

The richness of the task space for modular robots de-
pends on the number of traits and configuration-gait pairs.
Assigning joint angles to a complicated robotic structure
with the intent of motion can be quite unintuitive. In this
section we describe the modular robot simulator and Gait
Creator as tools that facilitate the process of populating the
library with a variety of entries (traits and the corresponding
configuration-gait definitions).

We developed a 3-Dimensional physics-based simulator
for modular robots like CKBot. This is similar to previous
work by Sucan et al. [18], where a physics engine is used
to plan and simulate reconfiguration of modular robots. This
simulator is built on the Open Dynamics Engine (ODE) [19],
using the open-source Python bindings PyODE [20] along
with PyGame [21] and OpenGL [22], [23] for visualization.
This allows the simulator to easily interface with LTLMoP
for simulating a modular robot. With this simulator, we
can create modular robot configurations of any finite size
and structure and test them without being limited by the
availability of hardware.

2”

Fig. 3.

FoldOver Configuration in the Gait Creator

The Gait Creator allows the user to manually move each
individual joint angle and see how the robot’s shape changes
in a physics-based environment. This way, snapshots of robot
configurations can be captured and stitched together to form
a gait. This gait is written as a fixed gait in the same text file
containing the robot’s configuration information and previous
gaits designed. These newly created gaits can then be exe-

File Edit Run Debug Help

Env starts with false

Robot starts in Island

Always not Water and not Water2 and not Water3

If you are not sensing predator and you are not sensing prey and you are not sensing
poison then visit Meadows

If you are not sensing predator and you are not sensing prey and you are not sensing
poison then visit Dock

If you are not sensing predator and you are not sensing prey and you are sensing poison
then visit Springs

Do T_low and do T_nonholonomic_tuming if and only if you are in Tunnel

T_fast is set on between Island and Dock and reset on Dock

T_1D_motion is set on between Island and Dock and reset on Dock

If you are sensing predator then stay there

If you are sensing prey and you are not in Tunnel and you are not on Bridge then do
T_stationary

Compiler Log ITL Output Workspace Decompesition

Checking for empty gaits...
No empty gaits!

Sample specifications with Gait Checker output. Unrealizable Specification (Left) and successfully synthesized specification (Right)

cuted and tested in simulation and hardware to see how well
they allow the robot to move. Additionally, when creating a
gait the user can choose to enter a set of traits describing
the robot motion which are then automatically added to the
configuration-gait-trait library. Figure 3 shows an example of
the Gait Creator’s capabilities, where the module highlighted
in red is the module the user is controlling.

VI. EXECUTING HIGH-LEVEL TASKS WITH THE CKBOT
PLATFORM

We demonstrate the capabilities of modular robots in
the LTLMoP framework through the following examples.
The first example uses the modular robot simulator and the
second uses the CKBot platform.

A. Scenario with Simulated Robot

The structured English sentences corresponding to these
requirement written out in Structured English are shown
below, for the workspace in Figure 4. The traits that are
present in this example are low, fast, nonholonomic_turning,
1D _motion and stationary.

—-Env starts with false

—Robot starts in Island

—-Always not Water and not Water2 and not Water3

—-If you were in Tunnel then do not sense predator or prey
—-If you were in between Island and Dock then do not sense
predator or prey

—-If you are not sensing predator and you are not sensing
prey and you are not sensing poison then visit Meadows
-If you are not sensing predator and you are not sensing
prey and you are not sensing poison then visit Dock

—-If you are not sensing predator and you are not sensing
prey and you are sensing poison then visit Springs

-Do T_low and T_nonholonomic_turning if and only if you
are in Tunnel

-T_fast is set on between Island and Dock and reset on Dock
-T_1D_motion is set on between Island and Dock

and reset on Dock

—-If you are sensing predator then stay there

—-If you are sensing prey then do T_stationary

Starting in the Island region, the robot is required to visit
the Dock or Meadows without ever going into the water
regions. In addition, the task specification above dictates
how the robot should react to the environment (i.e. sensors)
and location. In the simulated execution that can be seen

o

Tunnel

Fig. 4. Workspace for the Simulation Scenario

in the accompanying video, the following configuration-gait
pairs were automatically selected using the configuration-
gait-trait library. Fig. 6 depicts the simulation environment
and the sensor interface. The fast, 1D FoldOver configuration
is used to move over the Bridge region. When all sensors are
false and the robot is in the non-convex region, the default
Hexapod configuration is used (a). While in this default
configuration, the robot reacts to the sensors and locations.
When the Prey sensor is set to true, the robot transforms to
the Cross configuration and folds itself in place (b). Upon
entering the Tunnel region, the robot transforms to the narrow
and turning capable Snake configuration.

B. Scenario with Physical Robot

The task specification in structured English is shown
below, for the workspace in Fig. 5. The traits of interest
here are hardware (indicating configuration-gait pairs must
be feasible with current hardware), stationary, low and
narrow. Fig. 7 depicts snapshots of this example, and the
accompanying video contains the entire specification being
executed.

-Env starts with false

—Robot starts in Plains

—-Always do T_hardware

—-If you are not sensing Landslide and you are not sensing
Burn then visit Plateau

—-If you are not sensing Landslide and you are not sensing
Burn then visit Plains

-If you were in
-If you are not
Burn then visit

Trail then do not
sensing Landslide
Springs

Springs
and you

are sensing

-Do T_stationary if and only if you are in Springs and
you are sensing Burn

—-Always not Laval and not Lava2 and not Lava3

-If you were in between Laval and Lava2 then do not
sense Landslide

-T_low is set on between Laval and Lava2 and reset on
Plains or Plateau or Springs

-T_narrow is set on between Laval and Lava2 and reset
on Plains or Plateau or Springs

—-If you are sensing Landslide then stay there

Because we cannot reconfigure instantaneously between
configurations in hardware, especially if the number of
modules changes drastically as in Section VI, we have
used a single configuration with multiple gait sets. The 7ee

Boundary_P4

Trail

Volcano

SooooSoSSoogEooooosssssg

Boundary P9
sosossssoooo ol Soooooooooow
Boundary
Fig. 5. Workspace for the Hardware Scenario.

configuration (see Fig. 1) is similar to Snake, except it has
two additional modules at each side of its “tail” module. The
‘Snake.crawl’ configuration-gait pair does not use the side
modules and turns with the front “head” module. ‘Tee.crawl’,
on the other hand, uses the side modules to turn but not the
“head” module. When the robot is in Snake configuration it
ignores the additional side modules.

The robot turns on the traits ‘T_low’ and ‘T_narrow’ in
the Trail and Volcano regions (between Laval and Lava2),
which the library maps to the Snake configuration-gait pair.
The robot moves back and forth between Plains and Plateau
unless it senses the Burn sensor. In this case the robot visits
the Springs region and stays there until Burn is turned off.
Once the robot is in the Springs region and if it is still sensing
Burn, ‘T_stationary’ is activated which causes the robot to
“swim” in the TeeStationary.swim configuration-gait pair —
this is the same configuration as Tee but its gait is different.
Also, unless the robot is in Snake configuration, it stays still
while sensing Landslide.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated how tasks containing
traits can be automatically transformed into provably correct
control for a modular robot. We discussed the creation of
a configuration-gait-trait library and tools that facilitate the
process of creating entries for the library. The approach has
been demonstrated both in simulation and with the CKBot
hardware as seen in the paper and the accompanying video.

Our future work is focused on the following directions: (a)
Enhancing the simulator by allowing the generation of gradi-
ents and uneven terrain inside regions to test the functionality
of certain modular robot configurations. (b) Enriching the
library (and therefore the task space) and automating the
process of populating the library with methods similar to [24]
and [25]. (c¢) Adding reconfiguration controllers to replace
instantaneous robot transformations and (d) Experimenting
with additional modular robot platforms.

ACKNOWLEDGMENTS

We thank Jimmy Sastra and Dr. Mark Yim for providing
us with the CKBot hardware, software and support.

Dock

==
U—".-

Bridge

Bridge Dock

Mountain

Springs

Fig. 6. Screenshots of the simulation scenario. [Left] The default Hexapod configuration moving in the environment. [Right] Cross Configuration activated
when the Prey sensor (highlighted in green) becomes true.

Fig. 7.

Springs Plateau

configuration in the Springs region.

[1]

[2]

[3]

[4]

[51

[6]

[71
[8]

[91

[10]

[11]

REFERENCES

H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Temporal-logic-based
reactive mission and motion planning. Robotics, IEEE Transactions
on, 25(6):1370 —1381, dec. 2009.

M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transaction
on Automatic Control, 53(1):287-297, 2008.

A. Bhatia, L.E. Kavraki, and M.Y. Vardi. Sampling-based motion
planning with temporal goals. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 2689-2696, Anchor-
age, Alaska, May 3 2010.

S. Karaman and E. Frazzoli. Complex mission optimization for
multiple-uavs using linear temporal logic. In American Control
Conference, Seattle, Washington, 2008.

T. Wongpiromsarn, U. Topcu, and R.M. Murray. Receding horizon
control for temporal logic specifications. In Proc. of the 13th Inter-
national Conference on Hybrid Systems: Computation and Control,
2010.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Translating
structured english to robot controllers. Advanced Robotics Special
Issue on Selected Papers from IROS 2007, 22(12):13431359, 2008.
M. Yim, Ying Zhang, and D. Duff. Modular robots. Spectrum, IEEE,
39(2):30 34, feb 2002.

M. Yim, Wei-Min Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,
E. Klavins, and G.S. Chirikjian. Modular self-reconfigurable robot
systems [grand challenges of robotics]. Robotics Automation Maga-
zine, IEEE, 14(1):43 —52, march 2007.

C. Finucane, G. Jing, and H. Kress-Gazit. LTLMoP: Experimenting
with language, temporal logic and robot control. In IEEE/RSJ Int’l.
Conf. on Intelligent Robots and Systems, pages 1988 — 1993, Taipei,
Taiwan, October 2010.

H. Kress-Gazit and G.J. Pappas. Automatic synthesis of robot
controllers for tasks with locative prepositions. In IEEE International
Conference on Robotics and Automation, pages 3215-3220, Anchor-
age, Alaska, 2010.

E. A. Emerson. Temporal and modal logic. In Handbook of theoretical
computer science (vol. B): formal models and semantics, pages 995—
1072. MIT Press, Cambridge, MA, USA, 1990.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]

(24]

[25]

Plains

Screenshots of the hardware scenario. [Left] Snake.crawl configuration-gait pair in between the Laval and Lava2 regions. [Right] TeeStationary

N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1) Designs.
In VMCAI, pages 364-380, Charleston, SC, Jenuary 2006.

M. Park, S. Chitta, A. Teichman, and M. Yim. Automatic configuration
recognition methods in modular robots. Intl J. of Robotics Research
(invited), November 2006.

J. Sastra, S. Chitta, and Mark Yim. Dynamic rolling for a modular
loop robot. In International Symposium on Experimental Robotics,
Rio De Janeiro, Brazil, 2006.

J. Sastra, W. G. Bernal-Heredia, J. Clark, and M. Yim. A biologically-
inspired dynamic legged locomotion with a modular reconfigurable
robot. In Proc. of DSCC ASME Dynamic Systems and Control
Conference, Ann Arbor, Michigan, USA, October 2008.

Robots using ros: Mini-pr2. http://www.ros.org/news/
2010/08/robots-using-ros-mini-pr2.html, August
2010.

M. Yim, S. Homans, and K. Roufas. Climbing with snake-like robots.
In Proc. of the IFAC Workshop on Mobile Robot Technology, Jejudo,
Korea, May 21-22 2001.

I. Sucan, J. F. Kruse, M. Yim, and L. Kavraki. Reconfiguration
for modular robots using kinodynamic motion planning. In ASME
Dynamic Systems and Control Conference, Ann Arbor, MI, October
2008.

Open dynamics engine (ode) community wiki. http://opende.
sourceforge.net/wiki/index.php/Main_Page, April
2010.

Pyode. http://pyode.sourceforge.net/, 2010.

Pygame wiki. http://www.pygame.org/wiki/about.
Khronos Group. Opengl api documentation overview. http://www.
opengl.org/documentation/, 2011.

Pyopengl 3.x, the python opengl binding. http://pyopengl.
sourceforge.net/.

D. Marbach and A.J. Ijspeert. Online optimization of modular
robot locomotion. In Mechatronics and Automation, 2005 IEEE
International Conference, volume 1, pages 248 — 253, July 2005.

A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita,
and S. Kokaji. Automatic locomotion design and experiments for
a modular robotic system. Mechatronics, IEEE/ASME Transactions
on, 10(3):314 -325, june 2005.

