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Abstract — This paper addresses the problem of coordinating One limitation of the technique as presented in [1] comes
multiple heterogeneous sensing platforms performing a searffam the assumption that every sensor node transmits and
mission for a single target in a dynamic environment. In this ageceives every single observation without a miss via broad-
proach, the decision makers build an equivalent representatig@sting. Beyond the obvious bandwidth limitations, such
of the Probability Density Function (PDF) of the target state bygsg,mptions are not practical in real life since communica-
communicating with their neighbors in a decentralized Bayesign, , o stams are plagued by delays and intermittent trans-
sensor network enabling them to coordinate their actions with-. . . . .

out exchanging any information about their plans. This paper fo- issions. This paper.focuses on overcoming this pmb'e”."
cuses on the communication aspect of the network. A chan é?r_esems an a}daptathn for general PDFs of the Channel.fll—
filter that handles general PDF's is developed. The channel fii€r introduced in [3] which allows node-to-node communi-
ter assures that complete global information is recovered at ea6@tion in the Bayesian sensor network (Fig. 1). This signif-
node provided that the network connectivity is acyclic. A chaicantly reduces the communication loads that are incurred
nel manager is also developed that uses the Hellinger divergeribea fully connected network, as well as allowing intermit-
measure between the node and channel estimates adaptivelytdert burst communications and recovery from failed trans-
termines when to communicate on any particular channel. It ipissions. The general distribution channel filter ensures

tion results are used to evaluate the accuracy of the filtering alg fovided that the network connectivity is acyclic, i.e. tree-
rithm and demonstrate the efficiency of the resulting coordinat §

. . %nnected without loops. The accuracy of the estimates is
search trajectories. . : .
_ _ _evaluated using the Hellinger affinity measure. A channel
Keywords: general dec_entrallzed data fusion, channel f'ltefnanager is also developed that uses the same divergence
channel manager, coordinated control, search measure applied between the node and channel estimates to
1 Introduction adaptively determine when to communicate on any particu-

In an uncertain world, two questions arise when facing yi@r channel.
problem of coordinating a team of heterogeneous sensing _SensorNode w

platforms involved in an information gathering task such D«Q:] \ User Node
as searching, surveying, exploring or tracking. First, how / @

should all the information available about the task at hand

be represented and fused with all the new sensor observa- Q"(;I]
tions? Secondly, when and what should the team members e [I;)_»D
communicate in order to increase their situation awareness \

but most importantly to coordinate their actions in an effec- C}k A munication
tive manner? ﬁ»@

Medium
In [1], an active Bayesian sensor network approach By 1 A general de

coordinating an arbitrary humber of autonomous sen
platforms performing a search mission was introduced. ) ) ) i
The framework presented integrates a general decentrali ed e paper IS orgamZeq as follqws. First, Sec. 2 reviews
Bayesian filtering technique with an adaptation of the d 1€ decer_1tra|_|zed Bayesian fllterl_ng algor_lthm, that accu-
centralized coordinated control scheme first proposed ely maintains and updatt_as the mfo_rmatlon about the tar-
Grocholskyet al. [2]. In this approach, each sensor nogdet state, anq the decentralized coordinated cpntrol strategy.
builds an equivalent representation of the Probability Def"€" S€¢- 3 introduces the general channel filter and chan-
sity Function (PDF) of the target state by exchanging oBe! manager and dlsgusses communication issues. Sec. 4
served information with all the other nodes in the Bayesiéi‘?scr'beS the §ear_ch|ng prpblem. Sec. 5 evaluates the ac-
sensor network. Each decision maker locally plans basgy 2<Y of the f||ter|ng algorlth_m and demonstrates t_he ef-
on that current common global picture of the world. B{)Glency of the resulting _coord!nated search traJecForles for
continuously exchanging information and dynamically af team of ‘,J”ma””ed ar vehicles (,UAVS) searchllng for a
tering and updating the prior on which these local dec?mglg mobile non-e.vad|'ng target.'FlnlaIIy, conclusions and
sions are made, the decision makers influence each otff&9°'N9 research directions are highlighted.
rendering their trajectories globally consistent and coord Active Bayesian Sensor Network
nated. Scalability, modularity and real-time adaptability afehis section reviews the active Bayesian sensor network
the advantages of the decentralized approach. framework introduced in [1]. At the core of the approach

centralized Bayesian sensor network with
int-to-point communication.



is a general decentralized Bayesian filtering algorithm ne2-1.2 Update
essary to predict and update the hlgh!y non—_Gaussmn _tarﬂ?{ime stepk, anew set of observations = {z! .., Zévs}
state PDF. The Bayesian approach is particularly suitabjgcomes available. For each sengahe mapping of the
for combining heterogeneous non-Gaussian sensor obsgfget state observation probabilityzt € R"=, for each
vations with other sources of quantitative and qualitativ§iven target statex; € R"-, is referred to as the obser-
information [4, 5]. In this paper independent control lawgation likelihood, or sensor model, and denotéd: |x?,).
are implemented at each sensor node hence making th&ssuming all the observations to be conditionally indepen-
active. dent, the update for the prior PQFx} |z;.,_1) (posterior

) o from the prediction stage (2)) is performed using the fol-
2.1 Bayesian Filtering lowing Bayes rule also referred to in the literature as the
In the searching problem, the unknown variable of interé$hdependent opinion pool”
is the target state vector at tilkedenotedk], € R™= which . . A
in general describes the target location but could also in- p(xi|z1n) = K p(xk|21:0-1) HP(ZHX'«) C)
clude its attitude, velocity, and other properties. In this pa- o e
per the superscriptsand s; indicate a relationship to theWhere the normalization coefficiest is given by
target and the sensérespectively. The subscripts are used
to indicate the time index. The purpose of the analysis is
to find an estimate fop(x%|z1.;), the PDF overx! given
the sequence., = {z} : i = 1,..,N,,j = 1,..,k} 2.2 Control
of all the observations made from th& sensors on board Each of theN, sensor/vehicle system is governed by its
the search vehiclez;ﬂ being the observation from th€® own dynamic model in the form
sensor at time step. The analysis starts by determining .
a prior PDFp(x}|z¢) = p(x}) for the target state at time X4y = B (g, wy, wid) ®)

0.’ given all a"a"ap'e prior information inpludjng past eXpe\ivherewzi is the vector representing the process noise and
rience and domain knowledge. If nothing is known Othe{ﬁe external forces acting on the systénand whereu®:
than initial bounds on the target state vector, then a least 10he corresponding control input vector at tirhe Tr]:e

fqrm.ativ.e uniform PDF is usgd as the prior. Onc_e the pri?:%ntroller objective is to produce a command that will place
distribution has been established, the PDF at time ktepthe system in a desired state

p(xk|z1.1), can be constructed recursively using the pre-
diction and update equations alternatively. 2.2.1 Optimal Trajectory

Ns
K=/ [ [pocklzn) [ piai)|axi @

icti imality is defined in relation to an objective, or utili
A rediction
- . . . . function [7]. For multiple sensor platforms, an optimal co-
A prediction stage is necessary in Bayesian analysis when ~ " . . : :
: ) ... _Operative control solution must be a negotiated group deci-
the target state PDF to be evaluated is evolving with time;, o .
. L . . .. sion that is jointly optimal.
i.e. the target is in motion or the uncertainty about its lo- ) .
o . . For a control action sequenae = {uy,...uy, }, with
cation is increasing. The target state transition model can s . Yk
= {u¥ :i=1,..., N}, over a time horizon of length

. . i u, 5
g_enerally be des_crlbed b_y a set of time dependent non Ilnﬁdr: Ny, 3t, whereN,, is the number of lookahead steps, the
difference equations as in

utility function is denoted/i(u, N;) The optimal control
x;fﬂ = fl(x{,ul, wt) (1) policyu™ is the sequence that maximizes that utility sgbject
) ) ) to the control boundar s < u < uyp and the constraints
wherew]}, is a system input vector that includes the proceﬁs(u Ny) < 0.
noise and the external forces acting on the systemuénd ’ *_ . .
is the control input vector in the case of an active target. As u” = {uj,..,uy, } = arg max Ji(u, Ni) (6)
the focus of this paper is on non-evading target$, will
be the only system input discussed for the target.
Suppose the system is at time step- 1 and the latest
PDF updatep(x}_,|z1.x—1), is available. Then the pre-
dicted PDF of the target state at time skeip obtained from
the following Chapman-Kolmogorov equation

However, the computational cost for such optimal plans
is subject to the “curse of dimensionality”. With increas-
ing lookahead depth and number of agents, the solution be-
comes intractable. In practice only solutions for very re-
stricted number of lookahead steps are possible. Such opti-
. i , . mal plans can only be obtained for a small number of agents

P(Xilzik—1) = [ P(xXe1)P(ka]z1x-1) dXior - (2)  and are out of reach in decentralized systems unless exten-
wherep(xL |x._,) is a probabilistic Markov motion or pro- sive negotiations occur between the agents. A solution for
cess model which maps the probability of transition from $ecentralized systems is to follow a decentralized coordi-
given previous state!, , to a destination state!, at time Nated control strategy [1].

k. The process model is a function of the equations of mg- . .

tion for?he target (1) and of the known distri?aution on theig'z'2 Decentralized Coordinated Control

inputs,w?. Note that if the motion model is invariant overA coordinated control solution is different from a cooper-
the target states, then the integral in (2) results in a convive control solution. In a coordinated control problem,

lution operation. Various examples of process models wigecision makers plan individually based on their current
constraints can be found in [6]. knowledge of the world, i.e. target state PDF, and exchange



information via the sensor network ensuring that each plad perform the prediction and update stage by updating the
form builds an equivalent representation of the target stagarameters of the function. If the target PDF as well as the
PDF [2]. There is no mechanism to reach a negotiated optocess model are both Gaussian, then the most effective
come. Coordination results from the platforms affectingarametric filter is the well known Kalman filter. For the
each other’s local control decisions by contributing the pri@earching problem however, the process model, and espe-
on which these local decisions are made. For example, tally the target PDF can be highly non-Gaussian and the
utility for a vehicle to search a region with previously higltomplete description of the density function must be main-
probability density is decreased if another agent is alreatiined. In this paper the prediction and update equations
searching that region. This has the effect of increasing thél be evaluated numerically using a grid based discrete
relative utility of other regions of the space and divertingpproximation of the process model, the observation likeli-
the former vehicle towards these regions. This explaih®od and the target PDF.
how the vehicles avoid each other even though no collisi .
avoidance system has been implemented. %ﬁ General Channel Filter
Coordinated trajectories are suboptimal, but they hafelimitation of the technique as presented in the above sec-
the following appealing advantages of being completely déon comes from the assumption that every sensor node
centralized, computationally very cheap and highly scalaBi@nsmits and receives every single observation without a
as the nodal planning computation costs do not incred®ss via broadcasting. Beyond the obvious bandwidth limi-
with the number of platforms. As will be demonstrated ifations, such assumptions are not practical as physical com-
Sec. 5, the real-time adaptive plans are efficient and copunication systems are plagued by delays and intermittent
respond to locally maximizing the individual payoff gradifransmissions. To allow node-to-node communication in
ents. The simplest form of coordinated control is imp|éhe network, itis desirable that the nodes communicate their
mented with a lookahead depth of one-step correspondipsterior PDF instead of the their observation likelihood.
to maximizingN, independent control laws, i.dy (uj’,1) This enables the individual node to extract and combine
for all sensor. In this paper, the nodal greedy actions arée information originating from beyond their immediate
obtained in real time using a constrained non-linear opfi€ighbors. In order to do so, the node of Fig. 2 must be
mization technique called Sequential Quadratic Prograftodified by adding an extra estimator per communication

ming (SQP) [8]. channel as in Fig. 3a called a channel filter [3]. As will be
_ seen, the channel filter ensures that complete global infor-
2.3 Active Sensor Network mation is recovered at each node despite delayed commu-

Packaging a physical sensor with its own Bayesian filteringcations in the network.

processor is an attractive way of making the sensor mobiléel Node-to-Node Communication
Such a Bayesian sensor unit can be taker_1 anywhere to Fﬁ\rﬁime stepk, the incomplete set of observations avail-
measurements about the world. Mounting the Bayesial

.. i ; -
sensor unto an actuated mobile Platform and couplinga| le at nodq IS denotedzlzk,. The combined PDF esti

t |, %t *J i
to its own Controller makes it an active Bayesian sens&Pat€P(Xi|zii, Uz;,) based on two mcqmpleteﬁbutl not
Based on the latest belief about the wopigk!, |zt _,) Mutually exclusive sets of observations;; andz,;, is
and the sensor statg’ |, the Controller sends a commancPPtained from o .
u;’ , to the Platform to place the sensor in a desired po- t | i *j p(xg|215)p (%, |21, )

.k. 1 ) . p(xk|zlzk' U zl:k) X + ; *J (7)
sition x;’  with respect to the world to take the next ob- p(x} |21, Nzyl)

servation. Fig. 2 depicts algorithmically the Bayesian fi
Sensor Node i

! !
P | Z1gt)

bvherep(xZ\szk) and p(xL|z}’,) are the latest PDF esti-
mates from nodesandj, andp(x. |z}, Nz7,) is the es-
timate based on the common information. It is the purpose
4 of the channel filter to maintain that common PDF estimate
P, |ZL) between two nodes so it can be removed (divided) from the
@7‘ product of the PDF's to be combined in order to prevent
o, double-counting. The common PDF estimate will be re-
- PE1%) ferred to as the channel filter estimate. Eq. (7) appears in
Fig. 2: General active Bayesian sensor node in a fully connectgdsimilar form in [9] and an equivalent expression can be
network with broadcast communications. found in Sec. 4.10 of [4].
ter and how it interacts with the Controller, the Platform, As illustrated in Fig. 3 the node’s latest PDF is passed
and the sensor to form a node in a fully connected netwotk. the channel filter which divides it by it's own filter es-
The Platform block represents the actuators and dynamiteate to remove the common information. The residual
of both the sensor and the mobile vehicle, if present, avhich corresponds to the new information accumulated by
which the sensor is mounted. Any number of sensors cedie emitting node, through sensor observations and commu-
be attached to a particular fusion node. For simplicity inication with other neighbors, is then communicated to the
this paper, each sensor is packaged with its own node. receiving Channel which uses it to update its own common
There is more than one valid way to implement thestimate and passes it to the node. Once reception is ac-
Bayesian filtering algorithm. For example, it is possiblknowledged, the emitting Channel Filter also fuses the new
to represent the target PDF using parametric functions anfbrmation to update its own estimate. The Channel Filter
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Fig. 3: General active Bayesian sensor node with node-to-node communication: (a) sensor node with its channel filters; (b) channel

filter between two neighboring nodes.

is a recursive Bayesian filter which just like the node itse#.2.1 Estimation Error

has a prediction step to account for the target motion andEstimation error accumulates in the nodal PDF estimates

increasing uncertainty about its state. There can be multipibthe tree-connected with respect to the globally accurate

prediction/observation steps in between the communicatifully connected network. To evaluate the amount of error, it

steps. is proposed to use the following alpha divergence measure,
One of the major advantage of implementing the Chanreko known as the Renyi divergence

Filter comes from the fact that if for some reason a packet is 1 / t\a t\l—a gt

. . D(p;||p;) = | i i d 8
lost in the communication process, the channel does not up- (illp) a_1 )P (k)" () (8)
date its estimate allowing that information to be transmittehich whena = 1/2 reduces to
on 'th next communication step. Since the nodes only know D(pillp;) =2 1n/ [pi(x4)p; (xt) dxt, )
their immediate neighbors and are ignorant of the global

topology they cannot differentiate the source of the infof® Hellinger affinity measure, which as stated in [11] is

mation they receive. One necessary condition to maintdl}pnotonically related to a true distance metric between

proper accounting of the information is that the networlV0 densitiesp; and p;. The value range for the mea-
connectivity must be acyclic [3]. In other words, no comSUré goes from 0, whem; and p; are the same, to
& when the two PDF’s have nothing in common, i.e.

munication loops must exist between the nodes that Wou} . : .
enable the information to cycle through multiple times. Vpi(x,)p;(xj,) dxj, = 0.
3.3 Communication Management

3.2 Issues with the General Channel Filter In order to reduce the communication loads in a large net-
The Channel Filter guarantees the nodes to converge gxyk it is essential to implement some form of communi-
actly to the global estimate given a certain time delay, i.e. dhtion management to determine when to send information
there is no process involved. Otherwise small errors acq each channel. In this paper it is proposed to implement
mulate in the Node estimate as well as in the Channel Filtgt-hannel manager in each node which uses the Hellinger
estimate during the prediction stage. This is attributed to tgﬁmity measure (9) between the nodal PDF estimate and
fact that there is incoming information in transit from othefj,e channel filter estimate to determine the utility of com-
nodes still missing from the estimate during the predictiqﬂunicaﬂng on a given channel at any given time.
step. These errors are amplified with: Given a channel between two particular nodes, the al-
e the number of prediction steps and/or observatioggrithm works as follows. At initialization, the nodal esti-
made between each communication step; mates are the same as the channel estimate between the two
e the length of the communication chains in the nehodes and the divergence measure is equal to zero. As time
works; passes, the nodal PDF estimates diverge from the chan-
e the rate of change of the PDF caused by the proceag] estimate by accumulating information from new sensor
i.e. fast motion and/or diffusion rate;, observations and/or from communication with their other
¢ the amount of change in the PDF caused by any obsaeighbors. The channel manager determines that it is time
vation. to send the new accumulated information over the channel
Notice that these errors in general produce conservative een the node and channel estimate are sufficiently differ-
timates in a decentralized filter [10] since the predictioent, i.e. whenD(p;||p;) gets smaller than a certain thresh-
forward for a set of observations before the update of tlwd. Then both the channel and the receiving node estimates
global PDF estimate reduces their impact on the estimatget updated.



Notice that in this architecture, the receiving node wilFor this reasorP; will be referred to as the ‘cumulative’
not necessarily communicate back on the same time stpmbability of detection to distinguish it from the payoff
but it is most likely to pass on the newly received informaprobability of detection functiop,. Notice that plugging
tion onto its other neighbors as the boost in informatiothe expressions fagx, from (13) into (14) gives
which suddenly increase the divergence measure with its Po—1_ 15
the other channels, is likely to trigger more communications b @ (15)
hops. The advantage of this approach is that each node $iBce Qo = [ p(xf)dx{, = 1. This signifies that if the
termines on its own when it has accumulated enough né#get PDF is not normalized after each update as in (11),
information to send to any particular network neighbor. then its volumeg),,, represents the residual probability that

. the target is still present despite the search effort expended.
4 The Searching Problem Also, ask goes to infinity,(Q;, decreases towards zero and
This section describes the equations for computing the |evels off towards one as it becomes harder to generate
probability of detection of a lost object referred to as the tagrditional observation payoffy,, from hardly any proba-
get by using the outputs of the prediction and update eqysity mass left in the PDF.
tions from Sec. 2.1. An equivalent but different derivation As mentioned in [14], the goal of a searching strategy
is presented in [1]. Further details on the searching probleguid be to maximize the chances of finding the target
can also be found in [12] and [13] (Chap.9). iven a restricted amount of time by maximizidty over

Let the tal’get detection I|kel|h00d (Observation modeB given Ume horizon_ For a t|me horizon Of one as dis_
of the:'" sensor at time stepbe given byp(z}, = Dj |x}) cussed in Sec. 2.2.2, the individual utility function reduces
whereD; represents a ‘detection’ event by sensat time g Jp(uj’, 1) = p;*, the probability of detecting the target
k. The likelihood of ‘no detection’ by the same sensor ign the next time step (13) which in turn is equivalent to
given by its complemeni(D, |x%) = 1 — p(Di|x%). The the volume under the surface resulting from the product of
combined ‘no detection’ likelihood for all the sensors ahe ‘detection’ likelihood from sensarwith the predicted
time stepk is simply a multiplication of the individual ‘no pseudo target PDE,(XZ@M-J-
detection’ likelihoods

N , 5 Application
p(Drlxi) = [] (D) (10) PP

ey Ultimately, the goal of the ongoing research effort is to

— 1 —N, ._demonstrate the coordinated decentralized search frame-
whereDy, = Dy, ... N D~ represents the event of a N4 o, 4 team of heterogeneous autonomous mobile plat-
deltffr:gnn;tr)ns;ri\zlgﬂgg ?gc‘igggyizer?go{eﬁ:éniﬁeﬂ date!OTMS in various outdoor scenarios. A stepping stone to-
equation (3) can be rewritten as 9 ' P wards this goal is to investigate the problem using simula-
N, tion. The rest of this section presents the results from the
p(xt|z1) = p(xh|z1—1) HP(ZZ\XZ) (11) decentralized coordinated se_arch fram_ewo_rk implemented
i=1 for ateam of 5 UAVS, such as illustrated in Fig. 4a, searhing
The advantage of not normalizing the target PDF at evesy4000 x 4000m area for a single lost target, a liferaft
update is that the joint probability of failing to detect therig. 4b), drifting at sea. The motion model is a simple zero
targetin all of the steps from 1 fg denoted. = p(D1:1), mean Gaussian diffusion process with a standard deviation
can be directly obtained from the integration of the pseuq{qx andy of 35. More about the implementation details of
PDF update (11) the framework and the search problem can be found in [1].
Qu = [ pxkIDun) axt = [ p0xiiDun-s) (D) dxt —

where Dy.;, corresponds to the set of observatioﬁszk)
where every observation is a ‘no detection’, i.e; =
Dy, Vk. Then, it can be shown that the probability the
target gets detected for the first time on time stepx, (@)
is given by the volume under the surface resulting from \
the product of the combined detection likelihood, denoted
(1 — p(Dylx})] = p(Drlxt), with the predicted target
PDF, is equivalent to the reduction in volumeAQy) of

the pseudo PDF as in

_ / _
pe = [ o6t D) [t - (D] ax,
= Qr-1—Qk (13) TA‘,
Assuming no false detection from the sensors, the probabil- )
ity that the targehasbeen detected ik steps, denote®,, Fig. 4: Search scenario: (a) The fleet of Brumby Mark-Ill de-
is obtained from the cumulative sum of thgs as in veloped at ACFR. These UAVs have a payload capacity of up to

k 13.5 kg and operational speed of 50 to 100 knots; (b) Search sen-
P, = Zpi = Pu_1+ pi (14) soraperture cone and geometrical relationship between the search
= vehicle and the target.



Fig. 6 illustrates the coordinated search results for the astimate of the cumulative probability of detection. This
tive Bayesian sensor network algorithm presented in Seds3achieved by more frequent communication bursts espe-
where the network nodes are connected in series suchcidly in the regions where a lot of probability of detection
shown in Fig. 5. The first five rows in the figure correis accumulated as seen on heand zoomed inP; plots.

The residual divergence left after the extra communication
steps is also much smaller confirming that more frequent
communications reduce that amount of accumulated error
in the channel estimates. Also, because it affects the com-
Fig. 5: Chain network topology. munication delays and hence the shape of the nodal PDF

spond to the results where the channel manager commufiitimates, changing the valueiofy,. also affect the tra-
cation threshold is set t®;),,.., = —.02. Rows 1 to 3 Jectories. Notice the stronger symmetry in the later case
represent the 3D views of the nodal PDF estimates and fifgnpared with the previous one.

corresponding vehicle trajectories for nod¥d, N3 and ~ Beyond having communication intervals adapted to the
N5 respectively. The images represent snapshots take@@&ount of new information entering the system, the channel
time stepk = 100, 200 and 300 as well as the estimate affanager has also the advantage of producing much more
ter the four extra communication steps needed to reach féficurate nodal PDF estimates than a system with commu-
synchronization between the nodes. The fourth row sholigations at fixed intervals. The reason for this is that in a
all five vehicle trajectories and the exact broadcasted (B#§ed frequency system, an important amount of new infor-
PDF estimate for comparison with the nodal estimates. N@&tion is not passed along to the other nodes right away on
tice the small discrepancies between the PDF estimates #if following simulation steps, but rather on the next com-
to the communications delays. The fifth row displays in offunication step. Hence, for a 5 node chain topology with a
der: the Hellinger divergence measurés,, representing Communication interval of 10, it would take 40 simulation
the error in the nodal estimates with respect to the exact B8PS (4 hops x 10 steps/interval) for new information to go
estimate. The second plot of the row compares the nod@m node 1 to node 5 and most likely only 4 steps with
and BC payoff functiongy’s, while the third and fourth communication management. This results in lower nodal

compares the cumulative probability of detection functiorfivergence during the experiment, but also much smaller
P.’s. residual divergence as much less error is accumulated in the

The vertical gray line at step 300 on every plot repré:_hamnel estimates. The search platforms are also much less

sents the last simulation step after which the nodes simﬂiKﬁ'y to interfere with each other since their PDF estimates

communicate a few extra steps to ensure that all the inféf€ 8lmost the same.

mation has reached all nodes. It can be seen omjhglot For evaluation of the channel manager performances,
and confirmed on th@, plot that even after the synchro-FigS' 7a to d show the resulting coordinated search results
nization, the nodes display a little residual divergence froff" & fully connected network with broadcasted communi-
the broadcasted PDF due to the error accumulated in ffiions at every time step. Provided that every node re-
channel filters. This error produce a conservative estim&@VeS every observation from all the other nodes, no er-
reflected by the fact that the nodal cumulative probabilif" @ccumulates in the PDF estimates. From the cumula-
estimates are always below the broadcagtedThe chan- five probability of detection plot in F_|g. 7f it can b_e seen
nel managers ensure that the communication intervals 4fgt When the channel communication threshold is small,
adapted in such a way as that the nodal estimates do Wt Dtresh = —-005 (case N2Nb on the plot); closely
diverge too far from the BC one as witnessed by fhe follows the results from the fully connected (BC) case.
and P, plots. Clearly seen on thB;, plot is the reduction The resu!ts diverge more when the threshold value is in-
in nodal divergence that occurs during each communicatiGffased: i-Denresn = —.02 (case N2Nay, as the resulting
burst. The communication steps can also be easily iderffR2Ch trajectories are affected by the synchronization de-
fied from the peaks in the,, estimates and the steps in thd2YS In the nodal PDF estimates. Nevertheless, for these
P, estimates. Also worth noticing on the zoom in of thiwo cases, the final cumulative probability of detection val-
P, plot is that once a node communicates, it is usually fo€S: 300 = .877 and.867 for case b and a respectively,
lowed soon after by the receiving nodes which transmit f§€ Slightly better than for the fully connected network with
their other neighbors and so forth until the new informatiohs00 = -844. Finally, by allowing a more efficient allo-

that triggered the chain reaction is propagated through(ﬁiﬂon 9f the sear.ch effort, all of these three cases of de-
the network. centralized coordinated search perform much better than

The two last rows in Fig. 6 correspond to the resulf e straight area coverage pattern shown on Fig. 7e with

where the channel manager communication threshold is $ét° — -719. In fact, the coqrdma;ted search with the small
t0 Dipresn = —.005. For this case, the nodal PDF estimate%ommumcatmn threshold did 22% better.

are not presented as the differences between them andGhe Summary and Ongoing Work

exact BC one are hard to perceive visually. As can be seEhis paper addressed the problem of coordinating multi-
on the divergence plot from row 7 when compared with rople, possibly heterogeneous, sensing platforms performing
5, reducingDyy-.sn, 10 @ quarter of the previous value hag search mission for a single target in a dynamic environ-
the effect of also reducing the nodal estimate error by a fanent. However, the method is readily applicable to search-

tor of four. Comparing theP;, plots shows a much tightering problems of all kinds, let it be on land, underwater, or
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Fig. 6: Coordinated search results with node-to-node communication and channel manager: (row 1 to 5) results for channel communi-

cation threshold set tD;x-.sn = —.02, where (row 1 to 3) are the 3D views of the nodal PDF estimates and the corresponding vehicle

trajectories at time stefp= 100, 200, 300 and after synchronization for ndde N3 and N5 respectively, and where (row 4) are same

trajectories overlaid with the 3D views of the exact PDF estimate evolution; (row 6,7) resuldsfar,, = —.005, where (row 6) are

the vehicle trajectories overlaid with the 3D views of the exact PDF estimate evolution.
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time horizon of the decentralized search plans are also be-
ing investigated.

Beyond the demonstration of the approach on a team of
UAV's, the ultimate objective of this research is to eventu-
ally have multiple platforms participating in actual search
and rescue missions with real-time cooperative planning
and fully integrated human inputs in the loop. As shown
by the results presented, this technique has the potential to
greatly improve upon current search and rescue protocols,
which in turn could be critical in saving human lives.
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Fig. 7: Coordinated search with broadcast communication: (&l
to (d) 3D views of the target PDF and the coordinated trajectorie§1
evolution at time stefg = 1, 100, 200 and 300 respectively; (e)
Straight pattern search at= 300, and (f)Py vs. k for the broad- 5
cast, node-to-node (case a and b), and flight formation cases.

an airborne search for bushfires, lost hikers, enemy troob%
in the battlefield, or prospection for ore and oil, or even to
search for water or evidence of life on another planet. [

The general decentralized Bayesian framework preg
sented was demonstrated to adaptively find efficient coor-
dinated search plans that explicitly considers the search ve-
hicles kinematics, the sensors detection function, as well as
the target arbitrary motion model. Coordinated solutions
are suboptimal, but they have the appealing advantages, gf
being adaptive and completely decentralized. As such, be-
cause nodal computation costs are kept constant with the
number of platforms, they offer tremendous scalability pgry
tential limited only by the bandwidth of the communication
medium.

A channel filter that handles general probability density2]
functions was developed to allow node-to-node intermitte{%
burst communications and enable recovery from lost pack-
ets and transmission delays which plague practical com-
munication systems. A channel manager that significanﬁf}
reduces the communication loads was also developed. To
evaluate the accuracy of the resulting nodal PDF estimatg8g),
it was proposed to use the Hellinger divergence measure.
The same measure was also used with great effect by tse
channel manager to adaptively determine when to commu-
nicate on any particular channel.

As part of the ongoing research effort, techniques such
as Monte Carlo methods, or particle filters [15], as well as
the so called kernel methods for density estimation [16]
are being investigated to overcome the “curse of dimen-
sionality” limitations of the grid based approach presented.
Techniques to facilitate human interactions with the active
Bayesian network, and a Negotiation Filter to increase the

ment, and by AFOSR/AOARD under contract 03-13.
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