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Abstract – This paper addresses the problem of coordinating
multiple heterogeneous sensing platforms performing a search
mission for a single target in a dynamic environment. In this ap-
proach, the decision makers build an equivalent representation
of the Probability Density Function (PDF) of the target state by
communicating with their neighbors in a decentralized Bayesian
sensor network enabling them to coordinate their actions with-
out exchanging any information about their plans. This paper fo-
cuses on the communication aspect of the network. A channel
filter that handles general PDF’s is developed. The channel fil-
ter assures that complete global information is recovered at each
node provided that the network connectivity is acyclic. A chan-
nel manager is also developed that uses the Hellinger divergence
measure between the node and channel estimates adaptively de-
termines when to communicate on any particular channel. It is
proven to significantly reduce the communication loads. Simula-
tion results are used to evaluate the accuracy of the filtering algo-
rithm and demonstrate the efficiency of the resulting coordinated
search trajectories.

Keywords: general decentralized data fusion, channel filter,
channel manager, coordinated control, search

1 Introduction
In an uncertain world, two questions arise when facing the
problem of coordinating a team of heterogeneous sensing
platforms involved in an information gathering task such
as searching, surveying, exploring or tracking. First, how
should all the information available about the task at hand
be represented and fused with all the new sensor observa-
tions? Secondly, when and what should the team members
communicate in order to increase their situation awareness
but most importantly to coordinate their actions in an effec-
tive manner?

In [1], an active Bayesian sensor network approach to
coordinating an arbitrary number of autonomous sensor
platforms performing a search mission was introduced.
The framework presented integrates a general decentralized
Bayesian filtering technique with an adaptation of the de-
centralized coordinated control scheme first proposed by
Grocholskyet al. [2]. In this approach, each sensor node
builds an equivalent representation of the Probability Den-
sity Function (PDF) of the target state by exchanging ob-
served information with all the other nodes in the Bayesian
sensor network. Each decision maker locally plans based
on that current common global picture of the world. By
continuously exchanging information and dynamically al-
tering and updating the prior on which these local deci-
sions are made, the decision makers influence each other,
rendering their trajectories globally consistent and coordi-
nated. Scalability, modularity and real-time adaptability are
the advantages of the decentralized approach.

One limitation of the technique as presented in [1] comes
from the assumption that every sensor node transmits and
receives every single observation without a miss via broad-
casting. Beyond the obvious bandwidth limitations, such
assumptions are not practical in real life since communica-
tion systems are plagued by delays and intermittent trans-
missions. This paper focuses on overcoming this problem.
It presents an adaptation for general PDFs of the channel fil-
ter introduced in [3] which allows node-to-node communi-
cation in the Bayesian sensor network (Fig. 1). This signif-
icantly reduces the communication loads that are incurred
in a fully connected network, as well as allowing intermit-
tent burst communications and recovery from failed trans-
missions. The general distribution channel filter ensures
that complete global information is recovered at each node
provided that the network connectivity is acyclic, i.e. tree-
connected without loops. The accuracy of the estimates is
evaluated using the Hellinger affinity measure. A channel
manager is also developed that uses the same divergence
measure applied between the node and channel estimates to
adaptively determine when to communicate on any particu-
lar channel.

Fig. 1: A general decentralized Bayesian sensor network with
point-to-point communication.

The paper is organized as follows. First, Sec. 2 reviews
the decentralized Bayesian filtering algorithm, that accu-
rately maintains and updates the information about the tar-
get state, and the decentralized coordinated control strategy.
Then Sec. 3 introduces the general channel filter and chan-
nel manager and discusses communication issues. Sec. 4
describes the searching problem. Sec. 5 evaluates the ac-
curacy of the filtering algorithm and demonstrates the ef-
ficiency of the resulting coordinated search trajectories for
a team of unmanned air vehicles (UAVs) searching for a
single mobile non-evading target. Finally, conclusions and
ongoing research directions are highlighted.

2 Active Bayesian Sensor Network
This section reviews the active Bayesian sensor network
framework introduced in [1]. At the core of the approach



is a general decentralized Bayesian filtering algorithm nec-
essary to predict and update the highly non-Gaussian target
state PDF. The Bayesian approach is particularly suitable
for combining heterogeneous non-Gaussian sensor obser-
vations with other sources of quantitative and qualitative
information [4, 5]. In this paper independent control laws
are implemented at each sensor node hence making them
active.

2.1 Bayesian Filtering
In the searching problem, the unknown variable of interest
is the target state vector at timek, denotedxt

k ∈ Rnx which
in general describes the target location but could also in-
clude its attitude, velocity, and other properties. In this pa-
per the superscriptst andsi indicate a relationship to the
target and the sensori respectively. The subscripts are used
to indicate the time index. The purpose of the analysis is
to find an estimate forp(xt

k|z1:k), the PDF overxt
k given

the sequencez1:k = {zi
j : i = 1, ..., Ns, j = 1, ..., k}

of all the observations made from theNs sensors on board
the search vehicles,zi

j being the observation from theith

sensor at time stepj. The analysis starts by determining
a prior PDFp(xt

0|z0) ≡ p(xt
0) for the target state at time

0, given all available prior information including past expe-
rience and domain knowledge. If nothing is known other
than initial bounds on the target state vector, then a least in-
formative uniform PDF is used as the prior. Once the prior
distribution has been established, the PDF at time stepk,
p(xt

k|z1:k), can be constructed recursively using the pre-
diction and update equations alternatively.

2.1.1 Prediction

A prediction stage is necessary in Bayesian analysis when
the target state PDF to be evaluated is evolving with time,
i.e. the target is in motion or the uncertainty about its lo-
cation is increasing. The target state transition model can
generally be described by a set of time dependent non-linear
difference equations as in

xt
k+1 = f t

k(xt
k,ut

k,wt
k) (1)

wherewt
k is a system input vector that includes the process

noise and the external forces acting on the system, andut
k

is the control input vector in the case of an active target. As
the focus of this paper is on non-evading targets,wt

k will
be the only system input discussed for the target.

Suppose the system is at time stepk − 1 and the latest
PDF update,p(xt

k−1|z1:k−1), is available. Then the pre-
dicted PDF of the target state at time stepk is obtained from
the following Chapman-Kolmogorov equation

p(xt
k|z1:k−1) =

∫
p(xt

k|xt
k−1)p(xt

k−1|z1:k−1) dxt
k−1 (2)

wherep(xt
k|xt

k−1) is a probabilistic Markov motion or pro-
cess model which maps the probability of transition from a
given previous statext

k−1 to a destination statext
k at time

k. The process model is a function of the equations of mo-
tion for the target (1) and of the known distribution on their
inputs,wt

k. Note that if the motion model is invariant over
the target states, then the integral in (2) results in a convo-
lution operation. Various examples of process models with
constraints can be found in [6].

2.1.2 Update

At time stepk, a new set of observationszk = {z1
k, ..., zNs

k }
becomes available. For each sensori, the mapping of the
target state observation probability ,zi ∈ Rnz , for each
given target state,xt

k ∈ Rnx , is referred to as the obser-
vation likelihood, or sensor model, and denotedp(zi

k|xt
k).

Assuming all the observations to be conditionally indepen-
dent, the update for the prior PDFp(xt

k|z1:k−1) (posterior
from the prediction stage (2)) is performed using the fol-
lowing Bayes rule also referred to in the literature as the
“independent opinion pool”

p(xt
k|z1:k) = K p(xt

k|z1:k−1)

Ns∏
i=1

p(zi
k|xt

k) (3)

where the normalization coefficientK is given by

K = 1/

∫ [
p(xt

k|z1:k−1)

Ns∏
i=1

p(zi
k|xt

k)
]
dxt

k (4)

2.2 Control
Each of theNs sensor/vehicle system is governed by its
own dynamic model in the form

xsi

k+1 = fsi

k (xsi

k ,usi

k ,wsi

k ) (5)

wherewsi

k is the vector representing the process noise and
the external forces acting on the systemi, and whereusi

k

is the corresponding control input vector at timek. The
controller objective is to produce a command that will place
the system in a desired state.

2.2.1 Optimal Trajectory

Optimality is defined in relation to an objective, or utility
function [7]. For multiple sensor platforms, an optimal co-
operative control solution must be a negotiated group deci-
sion that is jointly optimal.

For a control action sequenceu = {u1, ...uNk
}, with

uj = {usi
j : i = 1, ..., Ns}, over a time horizon of length

T = Nk δt, whereNk is the number of lookahead steps, the
utility function is denotedJk(u, Nk) The optimal control
policyu∗ is the sequence that maximizes that utility subject
to the control boundsuLB ≤ u ≤ uUB and the constraints
g(u, Nk) ≤ 0.

u∗ = {u∗
1, ...,u

∗
Nk
} = arg max

u
Jk(u, Nk) (6)

However, the computational cost for such optimal plans
is subject to the “curse of dimensionality”. With increas-
ing lookahead depth and number of agents, the solution be-
comes intractable. In practice only solutions for very re-
stricted number of lookahead steps are possible. Such opti-
mal plans can only be obtained for a small number of agents
and are out of reach in decentralized systems unless exten-
sive negotiations occur between the agents. A solution for
decentralized systems is to follow a decentralized coordi-
nated control strategy [1].

2.2.2 Decentralized Coordinated Control

A coordinated control solution is different from a cooper-
ative control solution. In a coordinated control problem,
decision makers plan individually based on their current
knowledge of the world, i.e. target state PDF, and exchange



information via the sensor network ensuring that each plat-
form builds an equivalent representation of the target state
PDF [2]. There is no mechanism to reach a negotiated out-
come. Coordination results from the platforms affecting
each other’s local control decisions by contributing the prior
on which these local decisions are made. For example, the
utility for a vehicle to search a region with previously high
probability density is decreased if another agent is already
searching that region. This has the effect of increasing the
relative utility of other regions of the space and diverting
the former vehicle towards these regions. This explains
how the vehicles avoid each other even though no collision
avoidance system has been implemented.

Coordinated trajectories are suboptimal, but they have
the following appealing advantages of being completely de-
centralized, computationally very cheap and highly scalable
as the nodal planning computation costs do not increase
with the number of platforms. As will be demonstrated in
Sec. 5, the real-time adaptive plans are efficient and cor-
respond to locally maximizing the individual payoff gradi-
ents. The simplest form of coordinated control is imple-
mented with a lookahead depth of one-step corresponding
to maximizingNs independent control laws, i.e.Jk(usi

k , 1)
for all sensori. In this paper, the nodal greedy actions are
obtained in real time using a constrained non-linear opti-
mization technique called Sequential Quadratic Program-
ming (SQP) [8].

2.3 Active Sensor Network
Packaging a physical sensor with its own Bayesian filtering
processor is an attractive way of making the sensor mobile.
Such a Bayesian sensor unit can be taken anywhere to take
measurements about the world. Mounting the Bayesian
sensor unto an actuated mobile Platform and coupling it
to its own Controller makes it an active Bayesian sensor.
Based on the latest belief about the worldp(xt

k−1|zt
k−1)

and the sensor statexsi

k−1, the Controller sends a command
usi

k−1 to the Platform to place the sensor in a desired po-
sition xsi

kdes
with respect to the world to take the next ob-

servation. Fig. 2 depicts algorithmically the Bayesian fil-

Fig. 2: General active Bayesian sensor node in a fully connected
network with broadcast communications.

ter and how it interacts with the Controller, the Platform,
and the sensor to form a node in a fully connected network.
The Platform block represents the actuators and dynamics
of both the sensor and the mobile vehicle, if present, on
which the sensor is mounted. Any number of sensors can
be attached to a particular fusion node. For simplicity in
this paper, each sensor is packaged with its own node.

There is more than one valid way to implement the
Bayesian filtering algorithm. For example, it is possible
to represent the target PDF using parametric functions and

to perform the prediction and update stage by updating the
parameters of the function. If the target PDF as well as the
process model are both Gaussian, then the most effective
parametric filter is the well known Kalman filter. For the
searching problem however, the process model, and espe-
cially the target PDF can be highly non-Gaussian and the
complete description of the density function must be main-
tained. In this paper the prediction and update equations
will be evaluated numerically using a grid based discrete
approximation of the process model, the observation likeli-
hood and the target PDF.

3 General Channel Filter
A limitation of the technique as presented in the above sec-
tion comes from the assumption that every sensor node
transmits and receives every single observation without a
miss via broadcasting. Beyond the obvious bandwidth limi-
tations, such assumptions are not practical as physical com-
munication systems are plagued by delays and intermittent
transmissions. To allow node-to-node communication in
the network, it is desirable that the nodes communicate their
posterior PDF instead of the their observation likelihood.
This enables the individual node to extract and combine
the information originating from beyond their immediate
neighbors. In order to do so, the node of Fig. 2 must be
modified by adding an extra estimator per communication
channel as in Fig. 3a called a channel filter [3]. As will be
seen, the channel filter ensures that complete global infor-
mation is recovered at each node despite delayed commu-
nications in the network.

3.1 Node-to-Node Communication
At time stepk, the incomplete set of observations avail-
able at nodei is denotedz∗i

1:k. The combined PDF esti-
matep(xt

k|z∗i
1:k ∪ z∗j

1:k) based on two incomplete but not
mutually exclusive sets of observations,z∗i

1:k and z∗j
1:k, is

obtained from

p(xt
k|z∗i

1:k ∪ z∗j
1:k) ∝

p(xt
k|z∗i

1:k)p(xt
k|z

∗j
1:k)

p(xt
k|z∗i

1:k ∩ z∗j
1:k)

(7)

wherep(xt
k|z∗i

1:k) and p(xt
k|z

∗j
1:k) are the latest PDF esti-

mates from nodesi andj, andp(xt
k|z∗i

1:k ∩ z∗j
1:k) is the es-

timate based on the common information. It is the purpose
of the channel filter to maintain that common PDF estimate
between two nodes so it can be removed (divided) from the
product of the PDF’s to be combined in order to prevent
double-counting. The common PDF estimate will be re-
ferred to as the channel filter estimate. Eq. (7) appears in
a similar form in [9] and an equivalent expression can be
found in Sec. 4.10 of [4].

As illustrated in Fig. 3 the node’s latest PDF is passed
to the channel filter which divides it by it’s own filter es-
timate to remove the common information. The residual
which corresponds to the new information accumulated by
the emitting node, through sensor observations and commu-
nication with other neighbors, is then communicated to the
receiving Channel which uses it to update its own common
estimate and passes it to the node. Once reception is ac-
knowledged, the emitting Channel Filter also fuses the new
information to update its own estimate. The Channel Filter



(a)

(b)
Fig. 3: General active Bayesian sensor node with node-to-node communication: (a) sensor node with its channel filters; (b) channel
filter between two neighboring nodes.

is a recursive Bayesian filter which just like the node itself
has a prediction step to account for the target motion and/or
increasing uncertainty about its state. There can be multiple
prediction/observation steps in between the communication
steps.

One of the major advantage of implementing the Channel
Filter comes from the fact that if for some reason a packet is
lost in the communication process, the channel does not up-
date its estimate allowing that information to be transmitted
on the next communication step. Since the nodes only know
their immediate neighbors and are ignorant of the global
topology they cannot differentiate the source of the infor-
mation they receive. One necessary condition to maintain
proper accounting of the information is that the network
connectivity must be acyclic [3]. In other words, no com-
munication loops must exist between the nodes that would
enable the information to cycle through multiple times.

3.2 Issues with the General Channel Filter
The Channel Filter guarantees the nodes to converge ex-
actly to the global estimate given a certain time delay, i.e. if
there is no process involved. Otherwise small errors accu-
mulate in the Node estimate as well as in the Channel Filter
estimate during the prediction stage. This is attributed to the
fact that there is incoming information in transit from other
nodes still missing from the estimate during the prediction
step. These errors are amplified with:
• the number of prediction steps and/or observations

made between each communication step;
• the length of the communication chains in the net-

works;
• the rate of change of the PDF caused by the process,

i.e. fast motion and/or diffusion rate;
• the amount of change in the PDF caused by any obser-

vation.
Notice that these errors in general produce conservative es-
timates in a decentralized filter [10] since the prediction
forward for a set of observations before the update of the
global PDF estimate reduces their impact on the estimate.

3.2.1 Estimation Error
Estimation error accumulates in the nodal PDF estimates
of the tree-connected with respect to the globally accurate
fully connected network. To evaluate the amount of error, it
is proposed to use the following alpha divergence measure,
also known as the Renyi divergence

D(pi‖pj) =
1

α− 1
ln

∫
pi(xt

k)αpj(xt
k)1−αdxt

k (8)

which whenα = 1/2 reduces to

D(pi‖pj) = 2 ln
∫ √

pi(xt
k)pj(xt

k) dxt
k (9)

the Hellinger affinity measure, which as stated in [11] is
monotonically related to a true distance metric between
two densitiespi and pj . The value range for the mea-
sure goes from 0, whenpi and pj are the same, to
−∞, when the two PDF’s have nothing in common, i.e.∫ √

pi(xt
k)pj(xt

k) dxt
k = 0.

3.3 Communication Management
In order to reduce the communication loads in a large net-
work it is essential to implement some form of communi-
cation management to determine when to send information
on each channel. In this paper it is proposed to implement
a channel manager in each node which uses the Hellinger
affinity measure (9) between the nodal PDF estimate and
the channel filter estimate to determine the utility of com-
municating on a given channel at any given time.

Given a channel between two particular nodes, the al-
gorithm works as follows. At initialization, the nodal esti-
mates are the same as the channel estimate between the two
nodes and the divergence measure is equal to zero. As time
passes, the nodal PDF estimates diverge from the chan-
nel estimate by accumulating information from new sensor
observations and/or from communication with their other
neighbors. The channel manager determines that it is time
to send the new accumulated information over the channel
when the node and channel estimate are sufficiently differ-
ent, i.e. whenD(pi‖pj) gets smaller than a certain thresh-
old. Then both the channel and the receiving node estimates
get updated.



Notice that in this architecture, the receiving node will
not necessarily communicate back on the same time step,
but it is most likely to pass on the newly received informa-
tion onto its other neighbors as the boost in information,
which suddenly increase the divergence measure with its
the other channels, is likely to trigger more communications
hops. The advantage of this approach is that each node de-
termines on its own when it has accumulated enough new
information to send to any particular network neighbor.

4 The Searching Problem
This section describes the equations for computing the
probability of detection of a lost object referred to as the tar-
get by using the outputs of the prediction and update equa-
tions from Sec. 2.1. An equivalent but different derivation
is presented in [1]. Further details on the searching problem
can also be found in [12] and [13] (Chap.9).

Let the target detection likelihood (observation model)
of theith sensor at time stepk be given byp(zi

k = Di
k|xt

k)
whereDi

k represents a ‘detection’ event by sensori at time
k. The likelihood of ‘no detection’ by the same sensor is

given by its complementp(D
i

k|xt
k) = 1 − p(Di

k|xt
k). The

combined ‘no detection’ likelihood for all the sensors at
time stepk is simply a multiplication of the individual ‘no
detection’ likelihoods

p(Dk|xt
k) =

Ns∏
i=1

p(D
i

k|xt
k) (10)

whereDk = D
1

k ∩ ... ∩ D
Ns

k represents the event of a ‘no
detection’ observation by every sensor at time stepk.

If the normalization factorK is neglected, the update
equation (3) can be rewritten as

p(xt
k|z1:k)

′
= p(xt

k|z1:k−1)
′

Ns∏
i=1

p(zi
k|xt

k) (11)

The advantage of not normalizing the target PDF at every
update is that the joint probability of failing to detect the
target in all of the steps from 1 tok, denotedQk = p(D1:k),
can be directly obtained from the integration of the pseudo
PDF update (11)

Qk =

∫
p(xt

k|D1:k)
′
dxt

k =

∫
p(xt

k|D1:k−1)
′
p(Dk|xt

k) dxt
k

(12)
where D1:k corresponds to the set of observationsz1:k

where every observation is a ‘no detection’, i.e.zk =
Dk,∀k. Then, it can be shown that the probability the
target gets detected for the first time on time stepk, pk,
is given by the volume under the surface resulting from
the product of the combined detection likelihood, denoted[
1 − p(Dk|xt

k)
]

= p(Dk|xt
k), with the predicted target

PDF, is equivalent to the reduction in volume (−∆Qk) of
the pseudo PDF as in

pk =
∫

p(xt
k|D1:k−1)

′[
1− p(Dk|xt

k)
]
dxt

k

= Qk−1 −Qk (13)

Assuming no false detection from the sensors, the probabil-
ity that the targethasbeen detected ink steps, denotedPk,
is obtained from the cumulative sum of thepk ’s as in

Pk =
k∑

i=1

pi = Pk−1 + pk (14)

For this reasonPk will be referred to as the ‘cumulative’
probability of detection to distinguish it from the payoff
probability of detection functionpk. Notice that plugging
the expressions forpk from (13) into (14) gives

Pk = 1−Qk (15)

sinceQ0 =
∫

p(xt
0)dx

t
0 = 1. This signifies that if the

target PDF is not normalized after each update as in (11),
then its volume,Qk, represents the residual probability that
the target is still present despite the search effort expended.
Also, ask goes to infinity,Qk decreases towards zero and
Pk levels off towards one as it becomes harder to generate
additional observation payoff,pk, from hardly any proba-
bility mass left in the PDF.

As mentioned in [14], the goal of a searching strategy
could be to maximize the chances of finding the target
given a restricted amount of time by maximizingPk over
a given time horizon. For a time horizon of one as dis-
cussed in Sec. 2.2.2, the individual utility function reduces
to Jk(usi

k , 1) = psi

k , the probability of detecting the target
on the next time step (13) which in turn is equivalent to
the volume under the surface resulting from the product of
the ‘detection’ likelihood from sensori with the predicted
pseudo target PDF,p(xt

k|D1:k−1)
′
.

5 Application

Ultimately, the goal of the ongoing research effort is to
demonstrate the coordinated decentralized search frame-
work on a team of heterogeneous autonomous mobile plat-
forms in various outdoor scenarios. A stepping stone to-
wards this goal is to investigate the problem using simula-
tion. The rest of this section presents the results from the
decentralized coordinated search framework implemented
for a team of 5 UAVs, such as illustrated in Fig. 4a, searhing
a 4000 x 4000m area for a single lost target, a liferaft
(Fig. 4b), drifting at sea. The motion model is a simple zero
mean Gaussian diffusion process with a standard deviation
in x andy of 35. More about the implementation details of
the framework and the search problem can be found in [1].

(a)

(b)
Fig. 4: Search scenario: (a) The fleet of Brumby Mark-III de-
veloped at ACFR. These UAVs have a payload capacity of up to
13.5 kg and operational speed of 50 to 100 knots; (b) Search sen-
sor aperture cone and geometrical relationship between the search
vehicle and the target.



Fig. 6 illustrates the coordinated search results for the ac-
tive Bayesian sensor network algorithm presented in Sec. 3
where the network nodes are connected in series such as
shown in Fig. 5. The first five rows in the figure corre-

Fig. 5: Chain network topology.

spond to the results where the channel manager communi-
cation threshold is set toDthresh = −.02. Rows 1 to 3
represent the 3D views of the nodal PDF estimates and the
corresponding vehicle trajectories for nodesN1, N3 and
N5 respectively. The images represent snapshots taken at
time stepk = 100, 200 and 300 as well as the estimate af-
ter the four extra communication steps needed to reach full
synchronization between the nodes. The fourth row shows
all five vehicle trajectories and the exact broadcasted (BC)
PDF estimate for comparison with the nodal estimates. No-
tice the small discrepancies between the PDF estimates due
to the communications delays. The fifth row displays in or-
der: the Hellinger divergence measures,Dk, representing
the error in the nodal estimates with respect to the exact BC
estimate. The second plot of the row compares the nodal
and BC payoff functionspk ’s, while the third and fourth
compares the cumulative probability of detection functions
Pk ’s.

The vertical gray line at step 300 on every plot repre-
sents the last simulation step after which the nodes simply
communicate a few extra steps to ensure that all the infor-
mation has reached all nodes. It can be seen on theDk plot
and confirmed on thePk plot that even after the synchro-
nization, the nodes display a little residual divergence from
the broadcasted PDF due to the error accumulated in the
channel filters. This error produce a conservative estimate
reflected by the fact that the nodal cumulative probability
estimates are always below the broadcastedPk. The chan-
nel managers ensure that the communication intervals are
adapted in such a way as that the nodal estimates do not
diverge too far from the BC one as witnessed by theDk

andPk plots. Clearly seen on theDk plot is the reduction
in nodal divergence that occurs during each communication
burst. The communication steps can also be easily identi-
fied from the peaks in thepk estimates and the steps in the
Pk estimates. Also worth noticing on the zoom in of the
Pk plot is that once a node communicates, it is usually fol-
lowed soon after by the receiving nodes which transmit to
their other neighbors and so forth until the new information
that triggered the chain reaction is propagated throughout
the network.

The two last rows in Fig. 6 correspond to the results
where the channel manager communication threshold is set
toDthresh = −.005. For this case, the nodal PDF estimates
are not presented as the differences between them and the
exact BC one are hard to perceive visually. As can be seen
on the divergence plot from row 7 when compared with row
5, reducingDthresh to a quarter of the previous value has
the effect of also reducing the nodal estimate error by a fac-
tor of four. Comparing thePk plots shows a much tighter

estimate of the cumulative probability of detection. This
is achieved by more frequent communication bursts espe-
cially in the regions where a lot of probability of detection
is accumulated as seen on thepk and zoomed inPk plots.
The residual divergence left after the extra communication
steps is also much smaller confirming that more frequent
communications reduce that amount of accumulated error
in the channel estimates. Also, because it affects the com-
munication delays and hence the shape of the nodal PDF
estimates, changing the value ofDthresh also affect the tra-
jectories. Notice the stronger symmetry in the later case
compared with the previous one.

Beyond having communication intervals adapted to the
amount of new information entering the system, the channel
manager has also the advantage of producing much more
accurate nodal PDF estimates than a system with commu-
nications at fixed intervals. The reason for this is that in a
fixed frequency system, an important amount of new infor-
mation is not passed along to the other nodes right away on
the following simulation steps, but rather on the next com-
munication step. Hence, for a 5 node chain topology with a
communication interval of 10, it would take 40 simulation
steps (4 hops x 10 steps/interval) for new information to go
from node 1 to node 5 and most likely only 4 steps with
communication management. This results in lower nodal
divergence during the experiment, but also much smaller
residual divergence as much less error is accumulated in the
channel estimates. The search platforms are also much less
likely to interfere with each other since their PDF estimates
are almost the same.

For evaluation of the channel manager performances,
Figs. 7a to d show the resulting coordinated search results
for a fully connected network with broadcasted communi-
cations at every time step. Provided that every node re-
ceives every observation from all the other nodes, no er-
ror accumulates in the PDF estimates. From the cumula-
tive probability of detection plot in Fig. 7f it can be seen
that when the channel communication threshold is small,
i.e. Dthresh = −.005 (case N2Nb on the plot),Pk closely
follows the results from the fully connected (BC) case.
The results diverge more when the threshold value is in-
creased, i.e.Dthresh = −.02 (case N2Na), as the resulting
search trajectories are affected by the synchronization de-
lays in the nodal PDF estimates. Nevertheless, for these
two cases, the final cumulative probability of detection val-
ues,P300 = .877 and .867 for case b and a respectively,
are slightly better than for the fully connected network with
P300 = .844. Finally, by allowing a more efficient allo-
cation of the search effort, all of these three cases of de-
centralized coordinated search perform much better than
the straight area coverage pattern shown on Fig. 7e with
P300 = .719. In fact, the coordinated search with the small
communication threshold did 22% better.

6 Summary and Ongoing Work
This paper addressed the problem of coordinating multi-
ple, possibly heterogeneous, sensing platforms performing
a search mission for a single target in a dynamic environ-
ment. However, the method is readily applicable to search-
ing problems of all kinds, let it be on land, underwater, or
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Fig. 6: Coordinated search results with node-to-node communication and channel manager: (row 1 to 5) results for channel communi-
cation threshold set toDthresh = −.02, where (row 1 to 3) are the 3D views of the nodal PDF estimates and the corresponding vehicle
trajectories at time stepk = 100, 200, 300 and after synchronization for nodeN1, N3 andN5 respectively, and where (row 4) are same
trajectories overlaid with the 3D views of the exact PDF estimate evolution; (row 6,7) results forDthresh = −.005, where (row 6) are
the vehicle trajectories overlaid with the 3D views of the exact PDF estimate evolution.
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Fig. 7: Coordinated search with broadcast communication: (a)
to (d) 3D views of the target PDF and the coordinated trajectories
evolution at time stepk = 1, 100, 200 and 300 respectively; (e)
Straight pattern search atk = 300, and (f)Pk vs. k for the broad-
cast, node-to-node (case a and b), and flight formation cases.

an airborne search for bushfires, lost hikers, enemy troops
in the battlefield, or prospection for ore and oil, or even to
search for water or evidence of life on another planet.

The general decentralized Bayesian framework pre-
sented was demonstrated to adaptively find efficient coor-
dinated search plans that explicitly considers the search ve-
hicles kinematics, the sensors detection function, as well as
the target arbitrary motion model. Coordinated solutions
are suboptimal, but they have the appealing advantages of
being adaptive and completely decentralized. As such, be-
cause nodal computation costs are kept constant with the
number of platforms, they offer tremendous scalability po-
tential limited only by the bandwidth of the communication
medium.

A channel filter that handles general probability density
functions was developed to allow node-to-node intermittent
burst communications and enable recovery from lost pack-
ets and transmission delays which plague practical com-
munication systems. A channel manager that significantly
reduces the communication loads was also developed. To
evaluate the accuracy of the resulting nodal PDF estimates,
it was proposed to use the Hellinger divergence measure.
The same measure was also used with great effect by the
channel manager to adaptively determine when to commu-
nicate on any particular channel.

As part of the ongoing research effort, techniques such
as Monte Carlo methods, or particle filters [15], as well as
the so called kernel methods for density estimation [16]
are being investigated to overcome the “curse of dimen-
sionality” limitations of the grid based approach presented.
Techniques to facilitate human interactions with the active
Bayesian network, and a Negotiation Filter to increase the

time horizon of the decentralized search plans are also be-
ing investigated.

Beyond the demonstration of the approach on a team of
UAV’s, the ultimate objective of this research is to eventu-
ally have multiple platforms participating in actual search
and rescue missions with real-time cooperative planning
and fully integrated human inputs in the loop. As shown
by the results presented, this technique has the potential to
greatly improve upon current search and rescue protocols,
which in turn could be critical in saving human lives.
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