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Abstract — This paper describes a planar grid-based dis¢3D pixels) to represent the occupancy status of a given rect
tributed terrain height estimation algorithm for use in @di angular prism. Alternative techniques have been developed
tributed data fusion sensor network. Each sensor node for terrain mapping that have a more compact representation
the network represents the terrain using a Gaussian mititan 3D occupancy grid maps. Roth and Wibowo [6] present
ture to represent the elevation density in each grid cele Tha technique for translating point data, such as that oldaine
local sensor node uses a rigorous probabilistic analysis ffom laser line scanners, to triangular meshes that handle
sensor measurement errors to associate individual measuspurious data and holes in the point clouds. Thrmal.
ments with multiple grid cells to account for in-plane unf7] present a 3D mapping technique based on fine-grained
certainty. Representing the elevation density in each gnidulti-polygon surface models. Thruet al. [8] make the

cell as a sum of Gaussian distributions leads to a convpelygon representation more compact by using a real-time
nient channel filter implementation for distributed data fuvariant of the EM algorithm to cluster range data and simul-
sion. The new information exchanged between nodes is &@seously estimate the number and shape of planes in the
similated locally to generate a global terrain height esdien  scan data. While these techniques provide rich and dense
on each sensor node. The distributed terrain height algaaps, they do not provide online evaluation about the accu-
rithm is demonstrated in a laboratory test environment gsirracy of the maps.

data from three sensor nodes over a 60 second data collec-

tion. The distributed terrain height algorithm is shown to Other 3D mapping techniques include 2.5D representa-
perform equivalent to the centralized case even in the prégns that model the height of grid cells in a planar map as-

ence of communication failures. suming independence of heights in neighboring grid cells.
Bareset al. [9] create a 2.5D map using laser range finders
Keywords: Distributed data fusion, terrain mapping. that assigns the maximum height return in each grid cell to

the terrain height. A similar technique was used by Kleiner
. and Dornhege [10] after creating Gaussian distributed ter-
1 Introduction rain height estimates for each grid cell. Miller and Camp-
Mobile robots require an accurate representation of théiell [11] propose a mixture-model based technique, where
operating environment for path planning, localizationd arthe elevation of each grid cell is modeled as a mixture of
exploration. The representation of the environment reglirGaussian terrain height estimates. The mixture-modekbase
by the robots depends on both the mission and capabilitegorithm provides an estimate of the elevation unceraint
of the mobile robot. Planetary exploration robots [1], orUrin each grid cell. Pfafet al. [12] propose a modified ele-
manned Ground Vehicles (UGVs) performing security funeation map technique to handle environments with multiple
tions [2] need rich representations of the environment, ideminant elevations; a dominant terrain height in each grid
cluding 3D terrain maps. The terrain maps can be generatedl is selected. Triebedt al. [13] propose multi-level sur-
via a variety of different sensors which provide depth infoface maps that where multiple elevations in a grid cell are
mation, including laser-line scanners, stereo visiongmtd represented by vertical and horizontal patches. Rivadaney
from camera motion algorithms [3]. et al. [14] combined the techniques of [11] and [13] to
Robots equipped with laser range finders that scan a sineate probabilistic multi-level sets. All of these magpin
gle line have been used to generate 2D occupancy grid mégshniques create dense maps that are different from those
[4] which represent the terrain as a planar grid, with eatlh cereated from point obstacles [15] which are common in si-
having a probability of being occupied or unoccupied. Elfeaultaneous localization and mapping (SLAM) procedures.
[4] identified and Moravec [5] implemented a natural exterMiller's mixture model based technique is used in this pa-
sion of 2D occupancy grids with stereo-vision using voxelser, because it provides a dense elevation map represented



probabilistically, but it is extended to multiple robots. ter. Sections 4 and 5 describe the laboratory experiments
Multi-platform mapping has been performed using a vand results, and Section 6 finishes with conclusions.
riety of different techniques. Foat al. [16] point out that . .
even in the context of SLAM, when the initial robot posi2 ~ Single Node Mixture-Model Based
tions are known, or the robots are operating in a common Terrain Estimation
coordinate system, multi-robot mapping is a simple exten-
Sion Of Sing|e robot mapp|ng for Centra”zed map Creation_ The mixture'model based terrain estimation algorithm in'
Thrun [17] performs multi-robot 3D mapping where the 3tyoduced by Miller and Campbell [11] translates laser scan-
map (polygons) from each local sensor node is broadcasf®J terrain detections into an elevation distribution foe t
all other nodes and the received local map is inserted ileto fheight of the terrain in each cell in a planar grid. The al-
global map and fused using a quadratic error measure. T8ithm begins by transforming the terrain detections to an
technique, relies on each robot localizing themselvesén tinertial coordinate system accounting for uncertaintietbe
map of the other robot prior to transmitting map informaSensor alignments and measurements errors. Next, the ter-
tion. Ryde and Hu [18] join 3D occupancy grid maps frorf@in detections are probabilistically associated to ¢eltae
different sensor nodes through an exhaustive search roct&rain grid. An estimate of the elevation distribution et
Carpin [19] proposes a technique based on spectral inforrg8ll is then generated from the measurements associated in
tion in occupancy gnd maps to fuse |oca| maps into a globg_a.ch g“d cell. The elevation denSity in each g“d cell is as-
estimate. Martinez-Cantin [20] forces each robot to shareamed independent from one grid cell to the next. The key
common map while performing marginal-SLAM, and fusefgature of [11] is representing each cell as a mixture, which
maps by matching features. Fekal. [16] do not require 9reatly eases the ability to accumulate additional measure
initial positions of the robots to be known, but instead haJ@ents into the terrain estimate, as shown in the remainder of
the robots actively seek each other to determine their refhis section.
tive locations in order to fuse maps. All of these techniques The mixture model terrain estimation algorithm in [11]
essentially insert local maps into a global map, but none 8€9ins by defining a planar grid bk cells in an inertial co-
low uncertainty or confidence associated with the map to Bedinate system. Each rectangular grid cell is defined such
updated in the process. that the j cell extends fromEj_ to Ej+ in the Easting
The objective of sensor networks employing distributedirection andN;_ to Nj,. in the Northing direction. This
data fusion (DDF) networks is to generate globally consiglaces the center of grid cglatEN; = [E; N;]T whereE; =
tent estimates on each sensor node without the use of a cgfi— + Ei+) andN; = 3(Nj_ +Nj.). The extent of each
tralized processing node, without a common communic@tid cellis also easily defined such tis; = (E;, — E;_)
tion bus (node-to-node communication only) and without ré"dAN; = (Nj —N;_). The planar grid need not have a
quiring each node to have global knowledge of the netwokgiform cell size, but it is convenient to assume one without
topology (neighborhood knowledge only) [21]. The advan0ss of generality.
tages of DDF in a sensor network include robustness andl he transformation of range and angle laser scanner mea-
modularity [22]. The channel filter is a convenient approadrements to an inertial Cartesian coordinate system re-
to performing DDF for general probability distribution rep duires knowing the orientation of the sensor, defined by pa-
resentations [22]. None of the dense multi-robot mappifigmetersp, in the inertial coordinate system. For an East-
techniques described above adhere to the DDF paradigh®'th-Up (ENU) coordinate system, the transformed laser
Nettleton [21] demonstrate how discrete feature maps, sUggasurements are defined by a nonlinear functiomr)
as those generated in the SLAM paradigm, can be fusedd@fined in (1).
a distributed data fusion paradigm, but these maps are not E
dense. enud | N
This paper demonstrates generating dense terrain maps ==y [ = e 1)
from multiple robots in a common coordinate system. The 1
local terrain maps are generated using Miller’'s mixture-
model based approach which is good for memory scalinghere definingr®Y as a 4x 1 vector allows for the use
accuracy, and formally dealing with measurement erro 4 x 4 transformation matrices when converting between
The mixture-model based algorithm extends to multi-rob§fordinate systems.
mapping by identifying compact information sets represent Unfortunately, no sensor measurement or alignment pa-
ing the map that are shared in a distributed sensor netwdidneters are perfect. In fact, errors can arise from a yariet
The channel filter is used for DDF and allows each local set reasons including miss-calibration, thermal noise, emd
sor node to update and maintain a terrain map that formafigder quantization for gimbaled sensors. The observed sen-
incorporates map information from other sensor nodes. SO orientation parameters and laser measurements are cor-
The remainder of the paper includes a summary of thePted by noise from the truth as defined in (2) and (3).
mixture-model based terrain estimation algorithm for a sin P=p+vp )
gle sensor node in Section 2. Section 3 extends the algorithm ? - =

to the distributed data fusion paradigm using the channel fil =r+v 3)



wherev, andv; are the Gaussian distributed measuremewhere the probability is approximated using a single Riem-
errors that are assumed independent from each other withnn sum.
zero mean and covariancp andQ;. Next, attention turns to the in-cell height distribution of
The transformed laser measurements with errors, are tieeit terrain measurement given it occurred at the center of
fined by f(p+ vp,r 4+ v¢), which is linearized about the ob-the jt grid cell. The univariate in-cell height distribution is
served valuep andr'in (2) and (3): found by taking the conditional distribution of the Gaussia
B defined by the mean (6) and covariance (7):

of of
ENU a2
EVRIRH S vt o w @) B E NN~ (G 02
=f(P,7) +Ip(P.F)vp+ I (P,T)vr (5) where the mean and covariance are found via standard con-

_ ditioning rules of the Gaussian distribution [23]:
whereJ, andJ; are the Jacobians of the measurement func-

tion f taken with respect tp andr. Gicj = Gi + pi“’EN (REN) -1 [ENj —FEN] (11)
Using the linearized measurement function, it is possi- 2 _ pu_ puEN (pEN)1pENy 12
ble to generate the posterior distribution of the terraitede Oy =F — M ( [ ) [ 12)

is approximated with a Gaussian distributip(E,N,U) ~

K
KA [rp M i i i i
N(FENY, PENU) . The mean and covariance of the posteridr — {{p'k’ e'k}lzl}kzo up to timeK is defined, assuming
distribution of the terrain detection is given in (6) and,(7)M measurements per scan 0_f the ramgeand angle6i,
conditioned on all the information availabg). along with a set of sensor alignment measuremefits=

K
{Ek}k o Each laser scanner measurement in ther'set

é
fENU_ [ D E[rEVY)I] = f(p.f) = fEAN (6) and sensor alignment measuremgfithave been mapped
u =" u to each grid celfj with an association probability and height
estlmate{ ke Uikej, Of } . In practice, it is only nec-
pENU _ £ [(rENU _ PENU) ((ENU _fENU)T“] ) Pikej; Uike s Oy k=0 . P . Y :
= = = = essary to compute the association probability and height es

= Jp(D.1)Qpdp (D.7) + I (. D)Q I (. F) timates for a certain number of cells around the originadias
B scanner measurement[11].

Attention now turns to computing the distribution of the
elevation in theth cell given all of the terrain detections, de-
noted asp(Uj|rK, p¥). This is approximated as a Gaussian

wherer&NY andPENY are written in block form to identify ixture:

specific portions that are used later in the algorithm. Equ
tions (6) and (7) represent the terrain detection with Gaus- K K 1 KM A 2
sian uncertainty associated with the source; the next step i P(Uilr™, P") ~ — Z)Zi Pikej A (U"‘Ej’%ikei) (13)
to perform measurement-to-grid association. FR=0=

TheU dimension is marginalized out of each one ofhe wherec; = Sk M, pie; is a normalizing constant. Con-
transformed terrain measuremerFNY, BENYIM, in or-  sidering just the first and second moment of this Gaussian
der to generate a planar distribution of the terrain measurgixture, thejth cell’s terrain height is categorized by the
ment uncertainty (8): mean and covariance of the Gaussian mixture [23]:

pi(E,N):/ pi(L)dU:/ p(E,N,U)U  (8) i1 o

,;o e UGMJ o k;)i; Pike j Uike j (14)
:/ A (FENY RENY) du . 1 kw N
— ¥ (MY COREPRLEICE

where each of thé/l terrain measurements from a singld his allows each sensor node to maintain a small set of re-

scan of the laser range finder is assumed independent. cursively calculated simple statistics for each grid deditt
This gives the in-plane Gaussian distribution of the tere defined as the information s#:

rain measurement, wherg™ and PN are the mean and < Y

covariance r.egpec.:tlvely. The propgblh'ty of the terrawar'ne ZE( A { ZE _ z ZipikEj’ Zgﬂ _ Z Zipikejoikeja

surement originating from a specific cglis computed as: &nis s

CEN Ej+ rNj+ K K M > « K M )
e e )= [ ], BENINGE @ Zie= 3 3 Pueiier Zog = 3 3 Prci %
~ (AEj) (ANj) pi(Ej, Nj) (16)



The information seZX is defined to be all of the accumu-timek, is given by [22]:

lated information from the initial time up to and including

time t,. The update of the information set takes a simple 'Yz =z + 2 -7y, (19)
recursive form for subsequent time steps. The update of

one information set parameter is shown heredadditional WhereZ{{, ; is the common information contained in s&fs

time steps of data: andZJK. The tree-connected network topology is how advan-
tageous, because all common information between nodes
Z§ =z +Z5thRx and j is assured to have come across ithej" communi-
K+k M cation link [22]. Therefore, the common information up to
=Z5+ > ZI Pikej (17) timeK isjust the union of the information shared previously:
k=K1i=
AN A o (20)

The information set for each grid cell allows the entire map

with probabilistic accuracy information to be stored usingherefore, the local information set at noidep to timek,
four constants for each grid cell. More importantly, as NeWYiven all of the information sets in the neighborhdgdsen-

independent information becomes available from the locgdr nodes connected tpwherei ¢ N; can now be updated:
sensor node or remote sensor nodes, the information sets are

_updated with (17) and constant memory for a given grid cell ZK = ZK-14 Zinl,K n Z‘ [zr B Zi?fjl} 1)
is used. i
3 Distributed Terrain Estimation whereZ~*¥ is the new information accumulated at sensor

The distributed terrain estimation algorithm propose'docg,gy (ie. from new laser n_leasuremenj[s) frtp@l o
here allows each sensor node to maintain an estimate of 3% ZJ'. IS the information rgceyed from.nelghbormg sensor
global environment, in a form identical to the local mixturé‘odeJ attimet. The received mforr’_nathn from neighbor-
based terrain map on a single sensor node. In addition'"}¢ node may be delayed from the time it was genera'lte'd on
is desired that as all information is communication arountQe remote sensor node. The locally updated and assimilated

the network, the distributed solution approaches the aéntrmform?‘t'on S.et (21) from nodeis placed as th_e output to
ized data fusion solution. The channel filter [22] provide%ny nelghborlng npdes connected to sensor ndde sub-

a convenient framework to perform DDF. The channel ﬁF_eql_Jent_transmBsmn. . .

ter keeps track of the common information shared betwe nLt IS S.t'” necessary to update the common |rTformat|on on
sensor nodes on opposite ends of a data link. The netw ! ¥] € N; for the subsequent time step:

topology influences the implementation of the channel fil- ZK 7K K gK-1 (22)

ter, and in the proposed approach, a tree-connected, @cycli i ! ! i

network topology is assumed. The desire is for each sen§®fe common information on link— j is updated with the
nodei andj on a communication link to estimate the Stat%ceived information_zj from Sensorj and the updated and
x (terrain height of an individual cell) given the union of th&ssimilated informatio@ sent out from nodeas shown in
information sets available at each node [22]: the data flow for sensor nodén Figure 1. The channel filter
K K implementation used here needs a tree-connected topology

_1 PXZ")p(XIZ}') (18) toensureall of the information received from nodst node

¢ p(xzf ﬂZ,K) i comes across link— j. In addition, sensor nodeneeds to

maintain a channel filter for each neighboring node, there-

where p(x|ZK) and p(x|ZK) are the posterior distributionsfore, the branching factor drives the computation and mem-
including all information received at sensor nodeand ory requirements on an individual node.
j, and p(xZNZY) is the posterior distribution given all
the common information contained in both information setg _
One description of the channel filter [22] assumes the pog Sensor Node i
terior distributions are Gaussian and uses the informatiq
form of the Kalman filter to maintain an estimate of (18).
A similar technigue could be used here for each grid cel
where the mean (14) and covariance (15) of the Gaussig T Sy |
mixture are used in the channel filter that assumes Gaussi —
posterior distribution. Fortunately, the mixture-modigiea . i
rithm represents the terrain map with a succinct infornmatig '9ure 1: Data flow for sensor nodedemonstrates dis-
set in each grid cell that enables tracking the union of tfiouted terrain mapping with channel filter.
information sets in sensor nodieand j directly. In the case of communication failure, the local informa-

The union of the information about the static terrain ontion set at node is updated (21) without informatio;fijK
communication channel between sensor nioded j up to from nodes whose communication links have failed such

Pz JZ])

2y Local z¢| | Channel "7|||] Z
Terrain Map Filter z, ~
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that the updated information &< =z~ + ZiK’l"K. The  Three robots are run in different paths around the environ-
channel filter for thé — j™ communication link remains un- ment for a 60 second data collection. The robots are run se-
changed while the link is down. If communication failurequentially to avoid sensing another robot (dynamic tejrain

persists foik time steps, the local sensor nodes continue tluring the terrain mapping. The three paths of the robots
update local information (21) and when communication &re shown in Figure 3, along with the raw laser detections.
restored the information from neighboring nocﬁ%*" is The three boxes are clearly visible from the raw laser scans.

received and assimilated at noidito ziK+K, this informa- The paths of the robots allow each one to cover a different

tion from sensor nodeis sent out and the channel filter (22)
is updated t/<"x. _—
To summarize the distributed terrain algorithm, the infor- ’ ? Rt
mation set for each grid cell is updated and received in ' ~
formation assimilated locally (21), while the channel filte
keeps track of the common information (22) on any com
munication link for each of the four parameters in each gric
cell. Using the locally updated and assimilated infornmatio
set (21), the final distribution of the in-cell terrain heigis-
timate is computed using (14) and (15).

z-Dimension (m)

y-Dimension (m)

4 Laboratory Experiment

. . . .. Figure 3: Three mobile robots collect laser scans over 60
The data collection was performed in Cornell University Seconds for distributed terrain mapping

Autonomous Systems Laboratory (ASL) using the Pioneer
P3-DX differential drive mobile robot from Mobile Robotsportion of the entire space, while the distributed terrain e
Inc. shown in Figure 2. The P3-DX robot base is equippdtination algorithm combines data from each sensor. Robot
with a custom built Mini-ITX computer running the OrcaA covers the area above0.5 m in the y-dimension and ob-
Robotics [24] software framework for sensor integratiod arperves all three obstacles. Robot B covers the area bebw 1
control. The primary sensor for the terrain height estim#? in the y-dimension and only observes the top of the up-
tion task is the compact Hokuyo URG-04X laser scannggr obstacle, but observes the entirety of the other olestacl
which features a 240field-of-view and angular resolution Robot C covers the longest path in the same amount of time
of 0.36°. The laser is pitched downward 4&nd scans and as a result observes the obstacles quickly.

along the ground as the robot moves forward in a push-The robots are connected in a chain topology such that
broom fashion. Robot A and B communicate and Robot B and C commu-
nicate. The individual communication links are assumed in-
dependent of one another, meaning data flowing on one link
(i.e. Ato B) does not imply data is transfered on the other
link (B to C). The robots attempt to communicate at approxi-
mately 02 Hz, and experiments are run with 100% and 50%
probability of communication success on the link between
each robot. The challenge of the distributed terrain estima
tion algorithm is to fuse all of the raw terrain measurements
into a common estimate of the terrain on each robot.

o o ro s R o 5 Results

. ) . . . . The first experiment develops the benchmark perfor-
Figure 2: Mobile robot used in Cornell University's ASL ance using a centralized terrain estimation algorithm.

equpe.d with 'asef scanner and on-board computer and fth robot communicates all raw measurements when they
test environment with three obstacles.

are taken to a central server; the server performs terrain

The test environment is.Bx 4.1 meters and is instru- estimation using the single node terrain mapping algo-
mented with a Vicon MX+ precision tracking system thatithm. Additionally, each sensor node operates indepen-
determines position and attitude of 3D objects (noticektracdently (without communicating to other nodes or receiving
ing markers on the mobile robot in Figure 2) in the testata from the central server) to generate a local terrain map
environment and is used to localize the robots. The térhe centralized solution is the goal of the distributedatierr
rain features in the environment consist of three boxestimation algorithm. The local terrain map generated by
(20x 7.5 x 4.5) cm tall that are meant to simulate trafficsensor node B is shown in Figure 4. Sensor node B has a
cones or other similarly sized obstacles for a full-sizffitra significant amount of distortion in the map due to vibration
vehicle. The boxes are spaced approximatetlyrh from induced sensor alignment errors, despite each sensor node
each other in a triangular pattern. having the same measurement error characteristics.




The path the robot taken by Robot B causes the top ¢
stacle(0.25,1.75) to be observed on a edge of the laser lin
scanner field of view. This causes only a few terrain me
surements to be associated with the grid cells of the olesta
resulting in poor accuracy of the height estimate. The loc
terrain map for sensor node C is shown in Figure 5. Se
sor node C clearly observes each one of the obstacles,
is moving quickly through the environment, which degrade
the accuracy compared to a sensor that moves more slo - = ,
The additional error is due to less sensor data per grid ¢ ’ o oo
on average. In addition, sensor node C does not observe SERU——

terrain measurements in the upper right portion of the enirgyre 4: Local terrain height estimate (meag?) for sen-
ronment. sor node B shows poor accuracy due to sensor alignment

~ The centralized terrain map at the end of the data collegyors and observation of the top obstacle on the edge of the
tion is shown in Figure 6 and demonstrates the ability of thgser scanner field-of-view.

three robots to effectively cover the entire exploratioacsp
and generate an accurate height estimate for the three ob °
cles.
Another way of analyzing the data fusion problem is t
track the available information about a particular aredef t
map during the data collection. The mixture-model bast
terrain estimation algorithm provides a convenient metri
the measurement-to-grid association probabiflfy (16),
for tracking information content of a specific grid cell. Fo
the terrain mapping problem, the most important areas 4
the map are the obstacles, and the desire is to keep tracl oo coryemne
the information content over time at sensor noutethe grid
cells around the obstacles at a specific ttme

Global z-Coordinate (m)

Figure 5: Local terrain height estimate (meawy for sen-
sor node C shows it does not completely observe the entire
A i area.
PNogd () = Z'pj (t) (23)

i€ 03

whereCo represents the cells around the obstacles. The
formation in nodei is monotonically increasing, becaust
there is no way to remove association probability from
given grid cell. Therefore, the total information availabl
in the entire sensor network at a given time dtep

sensor Networﬁt) é Z jNodé (t) (24)
T

-0.05
Global y-Coordinate (m)

and the information available over the entire data coltecti s

f*éySenSO, Networktf ) iS given at the final time step. For  Figure 6: Centralized terrain map (meaw)lover the 60

the centralized data fusion case, the information availalsiecond data collection shows three obstacles with accurate

at each sensor node over the 60 second data collectioféight estimates.

shown in Figure 7 as a percentage of the total informatio

available in the entire networle™*. Robot B contributes ap-

proximately 50% of the total information about the obsta-

cles, because it's path is close to the two lower obstacle

Robot A and C each contribute approximately 25% of the

total information, and the central server accumulates 100¢

of the available information by the end of the data collettio
For the distributed data fusion case, the sensor nodes u

the channel filter to manage the exchange of informatio

about each grid cell from node-to-node. Each sensor noc o

accumulates local measurements while updating their loc © 0 20 L Sleen 0 0 %0

f[errain map (17) be_tween_communicating and assim"a_t"ﬂgure 7: Centralized: Accumulated information about the
information from neighboring nodes (21). The assmﬂauogbstacles for each sensor node and the central server.
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of information from neighbors is performed prior to sendin =~ ;5. _ "
map information to neighbors to allow for a single commt S Ditiuied nobor & e 14
nication attempt when desired. If communication is su 80[L7~= Centraized -
cessful across a channel, the channel filter updates the p -
information communicated (22). Nettletehal. [21] iden- eor : ~ :
tifies that these characteristics of the channel filter l¢ads 40l , ‘ H‘Pﬂ
scalability of the sensor network and robustness. N

The information about the obstacles for the distribute

]
NS
.
S

Accumulated Information (% of |

201 o
mapping approach is shown in Figure 8. The disjoint jumy éﬁ
in information at a given sensor node correspond to comn o - 20 20 20 =0 50
nication and assimilation of neighboring information fron, Time (sec)

the channel filter. Continuous increases correspond to Figure 9: Communication failure: Accumulated informa-
formation gain through the actual mapping process on ttien about the obstacles for each sensor node in the dis-
local sensor node. The time interval between-11b sec- tributed data fusion network achieves the centralizedfusi
onds in the data collection shows Robot A and B accumnede performance with 50% communication failure.

lating information about the obstacles locally, while Rbbo

C is not gaining any information about the obstacles. Hownk is restored and the information content jumps dramati-
ever, when the communication occurs at 15 seconds, eaglfly. At the end of the data collection, the robots continue
sensor node receives the total information available in thg attempt communication until they are successful. This
entire network about the obstacles. ensures the DDF performance achieves the centralized data
fusion performance by the end of the data collection even in

— 100 Sistibued robor A R the presence of communication failure.
. ; p
© Distributed Robot B

— & Distributed Robot C ﬁ .
.— | = = = Centralized B B
5 80 2 6 Conclusion
% 60l R f" The distributed terrain estimation algorithm is used to up-
E Fformmtion S date and maintain globally consistent terrain maps at each
£ aor : é ' node in a sensor network. The use of the mixture-model
= Lt based algorithm for terrain estimation provides compact in
£ 2o (e tocal information formation sets about each grid cell to share for data fusion.
o ’ . . . . . .
< éﬁ ‘ ‘ ‘ ‘ ‘ The channel filter is ideally suited for the distributed data

0 10 20 imelsery *° 50 60 fusion using these information sets, because it tracks the

Figure 8: Distributed mapping: Accumulated informatio
about the obstacles for each node in the distributed data
sion network is equivalent to the central server with 100
communication success.

reviously communication information and successfully up
I£¢)ates each node, even in the presence of communication fail-

/e, The distributed terrain estimation generates denps ma

) each sensor nodes that maintain the metrics about map
accuracy and confidence. The algorithm was successfully

One advantage of the channel filter for DDF is robustnegemonstrated using a 60 second data collection in a labora-
to communication link failure. The channel filter tracks intory setting.

formation exchanged between nodes, and during comrg&-
nication failure the channel filter is not updating becau Ckn0W|edgment

no information is being exchanged between nodes. Fur-The authors would like to thank the members of the Cor-
thermore, because the communicated information in the digsl| University Autonomous Systems Laboratory who made
tributed mapping problem is the four parameters about eagdta collection possible. This work is supported under the

grid cell, there is no need to buffer a sequence of dataN@rthrop Grumman Electronic Systems Scholars Program.
transmit. Instead, the output message for communication

is simply the cells that have had changes in the local mkpeferences

since the last communication. If the sensor node attemptgy] s. Se, T. Barfoot, and P. Jasiobedzki, “Visual motion
but fails to communicate, the output message is simply up-  estimation and terrain modeling for planetary rovers,”
dated to include any new changes in the local map between jn 8th International Symposium on Artificial Intelli-
the communication failure and a subsequent attempt. gence, Robotics and Automation in SpaeBattrick,
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