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Abstract – This paper describes a planar grid-based dis-
tributed terrain height estimation algorithm for use in a dis-
tributed data fusion sensor network. Each sensor node in
the network represents the terrain using a Gaussian mix-
ture to represent the elevation density in each grid cell. The
local sensor node uses a rigorous probabilistic analysis of
sensor measurement errors to associate individual measure-
ments with multiple grid cells to account for in-plane un-
certainty. Representing the elevation density in each grid
cell as a sum of Gaussian distributions leads to a conve-
nient channel filter implementation for distributed data fu-
sion. The new information exchanged between nodes is as-
similated locally to generate a global terrain height estimate
on each sensor node. The distributed terrain height algo-
rithm is demonstrated in a laboratory test environment using
data from three sensor nodes over a 60 second data collec-
tion. The distributed terrain height algorithm is shown to
perform equivalent to the centralized case even in the pres-
ence of communication failures.

Keywords: Distributed data fusion, terrain mapping.

1 Introduction
Mobile robots require an accurate representation of their

operating environment for path planning, localization, and
exploration. The representation of the environment required
by the robots depends on both the mission and capabilities
of the mobile robot. Planetary exploration robots [1], or Un-
manned Ground Vehicles (UGVs) performing security func-
tions [2] need rich representations of the environment, in-
cluding 3D terrain maps. The terrain maps can be generated
via a variety of different sensors which provide depth infor-
mation, including laser-line scanners, stereo vision, or depth
from camera motion algorithms [3].

Robots equipped with laser range finders that scan a sin-
gle line have been used to generate 2D occupancy grid maps
[4] which represent the terrain as a planar grid, with each cell
having a probability of being occupied or unoccupied. Elfes
[4] identified and Moravec [5] implemented a natural exten-
sion of 2D occupancy grids with stereo-vision using voxels

(3D pixels) to represent the occupancy status of a given rect-
angular prism. Alternative techniques have been developed
for terrain mapping that have a more compact representation
than 3D occupancy grid maps. Roth and Wibowo [6] present
a technique for translating point data, such as that obtained
from laser line scanners, to triangular meshes that handle
spurious data and holes in the point clouds. Thrun,et al.
[7] present a 3D mapping technique based on fine-grained
multi-polygon surface models. Thrunet al. [8] make the
polygon representation more compact by using a real-time
variant of the EM algorithm to cluster range data and simul-
taneously estimate the number and shape of planes in the
scan data. While these techniques provide rich and dense
maps, they do not provide online evaluation about the accu-
racy of the maps.

Other 3D mapping techniques include 2.5D representa-
tions that model the height of grid cells in a planar map as-
suming independence of heights in neighboring grid cells.
Bareset al. [9] create a 2.5D map using laser range finders
that assigns the maximum height return in each grid cell to
the terrain height. A similar technique was used by Kleiner
and Dornhege [10] after creating Gaussian distributed ter-
rain height estimates for each grid cell. Miller and Camp-
bell [11] propose a mixture-model based technique, where
the elevation of each grid cell is modeled as a mixture of
Gaussian terrain height estimates. The mixture-model based
algorithm provides an estimate of the elevation uncertainty
in each grid cell. Pfaffet al. [12] propose a modified ele-
vation map technique to handle environments with multiple
dominant elevations; a dominant terrain height in each grid
cell is selected. Triebelet al. [13] propose multi-level sur-
face maps that where multiple elevations in a grid cell are
represented by vertical and horizontal patches. Rivadeneyra
et al. [14] combined the techniques of [11] and [13] to
create probabilistic multi-level sets. All of these mapping
techniques create dense maps that are different from those
created from point obstacles [15] which are common in si-
multaneous localization and mapping (SLAM) procedures.
Miller’s mixture model based technique is used in this pa-
per, because it provides a dense elevation map represented



probabilistically, but it is extended to multiple robots.
Multi-platform mapping has been performed using a va-

riety of different techniques. Foxet al. [16] point out that
even in the context of SLAM, when the initial robot posi-
tions are known, or the robots are operating in a common
coordinate system, multi-robot mapping is a simple exten-
sion of single robot mapping for centralized map creation.
Thrun [17] performs multi-robot 3D mapping where the 3D
map (polygons) from each local sensor node is broadcast to
all other nodes and the received local map is inserted into the
global map and fused using a quadratic error measure. This
technique, relies on each robot localizing themselves in the
map of the other robot prior to transmitting map informa-
tion. Ryde and Hu [18] join 3D occupancy grid maps from
different sensor nodes through an exhaustive search process.
Carpin [19] proposes a technique based on spectral informa-
tion in occupancy grid maps to fuse local maps into a global
estimate. Martinez-Cantin [20] forces each robot to share a
common map while performing marginal-SLAM, and fuses
maps by matching features. Foxet al. [16] do not require
initial positions of the robots to be known, but instead have
the robots actively seek each other to determine their rela-
tive locations in order to fuse maps. All of these techniques
essentially insert local maps into a global map, but none al-
low uncertainty or confidence associated with the map to be
updated in the process.

The objective of sensor networks employing distributed
data fusion (DDF) networks is to generate globally consis-
tent estimates on each sensor node without the use of a cen-
tralized processing node, without a common communica-
tion bus (node-to-node communication only) and without re-
quiring each node to have global knowledge of the network
topology (neighborhood knowledge only) [21]. The advan-
tages of DDF in a sensor network include robustness and
modularity [22]. The channel filter is a convenient approach
to performing DDF for general probability distribution rep-
resentations [22]. None of the dense multi-robot mapping
techniques described above adhere to the DDF paradigm.
Nettleton [21] demonstrate how discrete feature maps, such
as those generated in the SLAM paradigm, can be fused in
a distributed data fusion paradigm, but these maps are not
dense.

This paper demonstrates generating dense terrain maps
from multiple robots in a common coordinate system. The
local terrain maps are generated using Miller’s mixture-
model based approach which is good for memory scaling,
accuracy, and formally dealing with measurement errors.
The mixture-model based algorithm extends to multi-robot
mapping by identifying compact information sets represent-
ing the map that are shared in a distributed sensor network.
The channel filter is used for DDF and allows each local sen-
sor node to update and maintain a terrain map that formally
incorporates map information from other sensor nodes.

The remainder of the paper includes a summary of the
mixture-model based terrain estimation algorithm for a sin-
gle sensor node in Section 2. Section 3 extends the algorithm
to the distributed data fusion paradigm using the channel fil-

ter. Sections 4 and 5 describe the laboratory experiments
and results, and Section 6 finishes with conclusions.

2 Single Node Mixture-Model Based
Terrain Estimation

The mixture-model based terrain estimation algorithm in-
troduced by Miller and Campbell [11] translates laser scan-
ner terrain detections into an elevation distribution for the
height of the terrain in each cell in a planar grid. The al-
gorithm begins by transforming the terrain detections to an
inertial coordinate system accounting for uncertainties in the
sensor alignments and measurements errors. Next, the ter-
rain detections are probabilistically associated to cellsin the
terrain grid. An estimate of the elevation distribution in the
cell is then generated from the measurements associated in
each grid cell. The elevation density in each grid cell is as-
sumed independent from one grid cell to the next. The key
feature of [11] is representing each cell as a mixture, which
greatly eases the ability to accumulate additional measure-
ments into the terrain estimate, as shown in the remainder of
this section.

The mixture model terrain estimation algorithm in [11]
begins by defining a planar grid ofNc cells in an inertial co-
ordinate system. Each rectangular grid cell is defined such
that the j th cell extends fromE j− to E j+ in the Easting
direction andNj− to Nj+ in the Northing direction. This
places the center of grid cellj atENj = [E j Nj ]

T whereE j =
1
2(E j− + E j+) andNj = 1

2(Nj− + Nj+). The extent of each
grid cell is also easily defined such that∆E j = (E j+ −E j−)
and∆Nj = (Nj+ −Nj−). The planar grid need not have a
uniform cell size, but it is convenient to assume one without
loss of generality.

The transformation of range and angle laser scanner mea-
surementsr to an inertial Cartesian coordinate system re-
quires knowing the orientation of the sensor, defined by pa-
rametersp, in the inertial coordinate system. For an East-
North-Up (ENU) coordinate system, the transformed laser
measurements are defined by a nonlinear functionf (p, r)
defined in (1).
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= f (p, r) (1)

where definingrENU as a 4× 1 vector allows for the use
of 4×4 transformation matrices when converting between
coordinate systems.

Unfortunately, no sensor measurement or alignment pa-
rameters are perfect. In fact, errors can arise from a variety
of reasons including miss-calibration, thermal noise, anden-
coder quantization for gimbaled sensors. The observed sen-
sor orientation parameters and laser measurements are cor-
rupted by noise from the truth as defined in (2) and (3).

p̂ = p+νp (2)

r̂ = r +νr (3)



whereνp andνr are the Gaussian distributed measurement
errors that are assumed independent from each other with
zero mean and covariancesQp andQr .

The transformed laser measurements with errors, are de-
fined by f (p+νp, r +νr), which is linearized about the ob-
served values ˆp andr̂ in (2) and (3):
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νr (4)

= f (p̂, r̂)+Jp(p̂, r̂)νp +Jr(p̂, r̂)νr (5)

whereJp andJr are the Jacobians of the measurement func-
tion f taken with respect top andr.

Using the linearized measurement function, it is possi-
ble to generate the posterior distribution of the terrain detec-
tion in the inertial coordinate systemrENU ∼ p(E,N,U) that
is approximated with a Gaussian distributionp(E,N,U) ≈
N(r̂ENU,PENU

r̂ ). The mean and covariance of the posterior
distribution of the terrain detection is given in (6) and (7),
conditioned on all the information available(I).
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where ˆrENU andPENU
r̂ are written in block form to identify

specific portions that are used later in the algorithm. Equa-
tions (6) and (7) represent the terrain detection with Gaus-
sian uncertainty associated with the source; the next step is
to perform measurement-to-grid association.

TheU dimension is marginalized out of each one of theM
transformed terrain measurements{r̂ENU

i ,PENU
r̂ i

}M
i=1 in or-

der to generate a planar distribution of the terrain measure-
ment uncertainty (8):

pi(E,N) =
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where each of theM terrain measurements from a single
scan of the laser range finder is assumed independent.

This gives the in-plane Gaussian distribution of the ter-
rain measurement, where ˆrEN

i and PEN
r̂ i

are the mean and
covariance respectively. The probability of the terrain mea-
surement originating from a specific cellj is computed as:

Pr
(

r̂EN
i ∈ j

)

=
∫ E j+

E j−

∫ Nj+

Nj−

pi(E,N)dNdE (9)

≈ (∆E j)(∆Nj) pi(E j ,Nj)

where the probability is approximated using a single Riem-
mann sum.

Next, attention turns to the in-cell height distribution of
the ith terrain measurement given it occurred at the center of
the j th grid cell. The univariate in-cell height distribution is
found by taking the conditional distribution of the Gaussian
defined by the mean (6) and covariance (7):

p(ui∈ j |E = E j ,N = Nj) ≈ N

(

ûi∈ j ,σ2
ûi∈ j

)

(10)

where the mean and covariance are found via standard con-
ditioning rules of the Gaussian distribution [23]:

ûi∈ j = ûi +Pu,EN
i
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Now, the set of all laser scanner measurements

rK ∆
=

{

{ρik,θik}
M
i=1

}K

k=0
up to timeK is defined, assuming

M measurements per scan of the rangeρik and angleθik,
along with a set of sensor alignment measurementspK =
{

p
k

}K

k=0
. Each laser scanner measurement in the setrK

and sensor alignment measurementpK have been mapped
to each grid cellj with an association probability and height

estimate
{

pik∈ j , ûik∈ j ,σ2
ûik∈ j

}K

k=0
. In practice, it is only nec-

essary to compute the association probability and height es-
timates for a certain number of cells around the original laser
scanner measurement[11].

Attention now turns to computing the distribution of the
elevation in thejth cell given all of the terrain detections, de-
noted asp(U j |rK , pK). This is approximated as a Gaussian
mixture:

p(U j |r
K , pK) ≈

1
c j

K

∑
k=0

M

∑
i=1

pik∈ j ·N
(

ûik∈ j ,σ2
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)

(13)

wherec j = ∑K
k=0 ∑M

i=1 pik∈ j is a normalizing constant. Con-
sidering just the first and second moment of this Gaussian
mixture, the jth cell’s terrain height is categorized by the
mean and covariance of the Gaussian mixture [23]:
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This allows each sensor node to maintain a small set of re-
cursively calculated simple statistics for each grid cell that
are defined as the information setZK

j :
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The information setZK
j is defined to be all of the accumu-

lated information from the initial time up to and including
time tk. The update of the information set takes a simple
recursive form for subsequent time steps. The update of
one information set parameter is shown here forκ additional
time steps of data:

Zκ
p = ZK

p +ZK+1,K+κ
p

= ZK
p +

K+κ

∑
k=K+1

M

∑
i=1

pik∈ j (17)

The information set for each grid cell allows the entire map
with probabilistic accuracy information to be stored using
four constants for each grid cell. More importantly, as new
independent information becomes available from the local
sensor node or remote sensor nodes, the information sets are
updated with (17) and constant memory for a given grid cell
is used.

3 Distributed Terrain Estimation
The distributed terrain estimation algorithm proposed

here allows each sensor node to maintain an estimate of the
global environment, in a form identical to the local mixture
based terrain map on a single sensor node. In addition, it
is desired that as all information is communication around
the network, the distributed solution approaches the central-
ized data fusion solution. The channel filter [22] provides
a convenient framework to perform DDF. The channel fil-
ter keeps track of the common information shared between
sensor nodes on opposite ends of a data link. The network
topology influences the implementation of the channel fil-
ter, and in the proposed approach, a tree-connected, acyclic
network topology is assumed. The desire is for each sensor
nodei and j on a communication link to estimate the state
x (terrain height of an individual cell) given the union of the
information sets available at each node [22]:

p(x|ZK
i

⋃

ZK
j ) =

1
c

p(x|ZK
i )p(x|ZK

j )

p(x|ZK
i

⋂

ZK
j )

(18)

where p(x|ZK
i ) and p(x|ZK

i ) are the posterior distributions
including all information received at sensor nodesi and
j, and p(x|ZK

i
⋂

ZK
j ) is the posterior distribution given all

the common information contained in both information sets.
One description of the channel filter [22] assumes the pos-
terior distributions are Gaussian and uses the information
form of the Kalman filter to maintain an estimate of (18).
A similar technique could be used here for each grid cell,
where the mean (14) and covariance (15) of the Gaussian
mixture are used in the channel filter that assumes Gaussian
posterior distribution. Fortunately, the mixture-model algo-
rithm represents the terrain map with a succinct information
set in each grid cell that enables tracking the union of the
information sets in sensor nodesi and j directly.

The union of the information about the static terrain on a
communication channel between sensor nodei and j up to

timek, is given by [22]:

ZK
i

⋃

ZK
j = ZK

i +ZK
j −ZK

i
⋂

j (19)

whereZK
i
⋂

j is the common information contained in setsZK
i

andZK
j . The tree-connected network topology is now advan-

tageous, because all common information between nodesi
and j is assured to have come across thei − j th communi-
cation link [22]. Therefore, the common information up to
timeK is just the union of the information shared previously:

ZK
i
⋂

j = ZK−1
i

⋃

ZK−1
j (20)

Therefore, the local information set at nodei up to timek,
given all of the information sets in the neighborhoodNi (sen-
sor nodes connected toi) wherei /∈ Ni can now be updated:

ZK
i = ZK−1

i +ZK−1,K
i + ∑

j∈Ni

[

Z̃K
j −ZK−1

i
⋂

j

]

(21)

whereZK−1,K
i is the new information accumulated at sensor

i locally (i.e. from new laser measurements) fromtk−1 to tk
andZ̃K

j is the information received from neighboring sensor
node j at timetk. The received information from neighbor-
ing node may be delayed from the time it was generated on
the remote sensor node. The locally updated and assimilated
information set (21) from nodei is placed as the output to
any neighboring nodes connected to sensor nodei for sub-
sequent transmission.

It is still necessary to update the common information on
link i − j, ∀ j ∈ Ni for the subsequent time step:

ZK
i
⋂

j = ZK
i + Z̃K

j −ZK−1
i
⋂

j (22)

The common information on linki − j is updated with the
received informatioñZ j from sensorj and the updated and
assimilated informationZK

i sent out from nodei as shown in
the data flow for sensor nodei in Figure 1. The channel filter
implementation used here needs a tree-connected topology
to ensure all of the information received from nodej at node
i comes across linki− j. In addition, sensor nodei needs to
maintain a channel filter for each neighboring node, there-
fore, the branching factor drives the computation and mem-
ory requirements on an individual node.
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Figure 1: Data flow for sensor nodei demonstrates dis-
tributed terrain mapping with channel filter.

In the case of communication failure, the local informa-
tion set at nodei is updated (21) without informatioñZK

j
from nodes whose communication links have failed such



that the updated information isZK
i = ZK−1

i + ZK−1,K
i . The

channel filter for thei− j th communication link remains un-
changed while the link is down. If communication failure
persists forκ time steps, the local sensor nodes continue to
update local information (21) and when communication is
restored the information from neighboring nodesZK+κ

j is

received and assimilated at nodei into ZK+κ
i , this informa-

tion from sensor nodei is sent out and the channel filter (22)
is updated toZK+κ

i
⋂

j .
To summarize the distributed terrain algorithm, the infor-

mation set for each grid cell is updated and received in-
formation assimilated locally (21), while the channel filter
keeps track of the common information (22) on any com-
munication link for each of the four parameters in each grid
cell. Using the locally updated and assimilated information
set (21), the final distribution of the in-cell terrain height es-
timate is computed using (14) and (15).

4 Laboratory Experiment
The data collection was performed in Cornell University’s

Autonomous Systems Laboratory (ASL) using the Pioneer
P3-DX differential drive mobile robot from Mobile Robots
Inc. shown in Figure 2. The P3-DX robot base is equipped
with a custom built Mini-ITX computer running the Orca
Robotics [24] software framework for sensor integration and
control. The primary sensor for the terrain height estima-
tion task is the compact Hokuyo URG-04X laser scanner
which features a 240o field-of-view and angular resolution
of 0.36o. The laser is pitched downward 45o and scans
along the ground as the robot moves forward in a push-
broom fashion.

Figure 2: Mobile robot used in Cornell University’s ASL
equipped with laser scanner and on-board computer and the
test environment with three obstacles.

The test environment is 3.1× 4.1 meters and is instru-
mented with a Vicon MX+ precision tracking system that
determines position and attitude of 3D objects (notice track-
ing markers on the mobile robot in Figure 2) in the test
environment and is used to localize the robots. The ter-
rain features in the environment consist of three boxes
(20× 7.5× 4.5) cm tall that are meant to simulate traffic
cones or other similarly sized obstacles for a full-size traffic
vehicle. The boxes are spaced approximately 1.4 m from
each other in a triangular pattern.

Three robots are run in different paths around the environ-
ment for a 60 second data collection. The robots are run se-
quentially to avoid sensing another robot (dynamic terrain)
during the terrain mapping. The three paths of the robots
are shown in Figure 3, along with the raw laser detections.
The three boxes are clearly visible from the raw laser scans.
The paths of the robots allow each one to cover a different

Figure 3: Three mobile robots collect laser scans over 60
seconds for distributed terrain mapping.

portion of the entire space, while the distributed terrain es-
timation algorithm combines data from each sensor. Robot
A covers the area above−0.5 m in the y-dimension and ob-
serves all three obstacles. Robot B covers the area below 1.0
m in the y-dimension and only observes the top of the up-
per obstacle, but observes the entirety of the other obstacles.
Robot C covers the longest path in the same amount of time
and as a result observes the obstacles quickly.

The robots are connected in a chain topology such that
Robot A and B communicate and Robot B and C commu-
nicate. The individual communication links are assumed in-
dependent of one another, meaning data flowing on one link
(i.e. A to B) does not imply data is transfered on the other
link (B to C). The robots attempt to communicate at approxi-
mately 0.2 Hz, and experiments are run with 100% and 50%
probability of communication success on the link between
each robot. The challenge of the distributed terrain estima-
tion algorithm is to fuse all of the raw terrain measurements
into a common estimate of the terrain on each robot.

5 Results
The first experiment develops the benchmark perfor-

mance using a centralized terrain estimation algorithm.
Each robot communicates all raw measurements when they
are taken to a central server; the server performs terrain
estimation using the single node terrain mapping algo-
rithm. Additionally, each sensor node operates indepen-
dently (without communicating to other nodes or receiving
data from the central server) to generate a local terrain map.
The centralized solution is the goal of the distributed terrain
estimation algorithm. The local terrain map generated by
sensor node B is shown in Figure 4. Sensor node B has a
significant amount of distortion in the map due to vibration
induced sensor alignment errors, despite each sensor node
having the same measurement error characteristics.



The path the robot taken by Robot B causes the top ob-
stacle(0.25,1.75) to be observed on a edge of the laser line
scanner field of view. This causes only a few terrain mea-
surements to be associated with the grid cells of the obstacle
resulting in poor accuracy of the height estimate. The local
terrain map for sensor node C is shown in Figure 5. Sen-
sor node C clearly observes each one of the obstacles, but
is moving quickly through the environment, which degrades
the accuracy compared to a sensor that moves more slowly.
The additional error is due to less sensor data per grid cell
on average. In addition, sensor node C does not observe any
terrain measurements in the upper right portion of the envi-
ronment.

The centralized terrain map at the end of the data collec-
tion is shown in Figure 6 and demonstrates the ability of the
three robots to effectively cover the entire exploration space
and generate an accurate height estimate for the three obsta-
cles.

Another way of analyzing the data fusion problem is to
track the available information about a particular area of the
map during the data collection. The mixture-model based
terrain estimation algorithm provides a convenient metric,
the measurement-to-grid association probabilityZp j (16),
for tracking information content of a specific grid cell. For
the terrain mapping problem, the most important areas of
the map are the obstacles, and the desire is to keep track of
the information content over time at sensor nodei in the grid
cells around the obstacles at a specific timet:

INodei (t)
∆
= ∑

j∈CO

Zi
p j

(t) (23)

whereCO represents the cells around the obstacles. The in-
formation in nodei is monotonically increasing, because
there is no way to remove association probability from a
given grid cell. Therefore, the total information available
in the entire sensor network at a given time stept is:

ISensor Network(t)
∆
=∑

i
INodei (t) (24)

and the information available over the entire data collection
I ∗ ∆

=ISensor Network(t f ) is given at the final time stept f . For
the centralized data fusion case, the information available
at each sensor node over the 60 second data collection is
shown in Figure 7 as a percentage of the total information
available in the entire networkI ∗. Robot B contributes ap-
proximately 50% of the total information about the obsta-
cles, because it’s path is close to the two lower obstacles.
Robot A and C each contribute approximately 25% of the
total information, and the central server accumulates 100%
of the available information by the end of the data collection.

For the distributed data fusion case, the sensor nodes use
the channel filter to manage the exchange of information
about each grid cell from node-to-node. Each sensor node
accumulates local measurements while updating their local
terrain map (17) between communicating and assimilating
information from neighboring nodes (21). The assimilation
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Figure 4: Local terrain height estimate (mean+1σ ) for sen-
sor node B shows poor accuracy due to sensor alignment
errors and observation of the top obstacle on the edge of the
laser scanner field-of-view.
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Figure 5: Local terrain height estimate (mean+1σ ) for sen-
sor node C shows it does not completely observe the entire
area.
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Figure 6: Centralized terrain map (mean+1σ ) over the 60
second data collection shows three obstacles with accurate
height estimates.
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Figure 7: Centralized: Accumulated information about the
obstacles for each sensor node and the central server.



of information from neighbors is performed prior to sending
map information to neighbors to allow for a single commu-
nication attempt when desired. If communication is suc-
cessful across a channel, the channel filter updates the prior
information communicated (22). Nettletonet al. [21] iden-
tifies that these characteristics of the channel filter leadsto
scalability of the sensor network and robustness.

The information about the obstacles for the distributed
mapping approach is shown in Figure 8. The disjoint jumps
in information at a given sensor node correspond to commu-
nication and assimilation of neighboring information from
the channel filter. Continuous increases correspond to in-
formation gain through the actual mapping process on the
local sensor node. The time interval between 10−15 sec-
onds in the data collection shows Robot A and B accumu-
lating information about the obstacles locally, while Robot
C is not gaining any information about the obstacles. How-
ever, when the communication occurs at 15 seconds, each
sensor node receives the total information available in the
entire network about the obstacles.
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Figure 8: Distributed mapping: Accumulated information
about the obstacles for each node in the distributed data fu-
sion network is equivalent to the central server with 100%
communication success.

One advantage of the channel filter for DDF is robustness
to communication link failure. The channel filter tracks in-
formation exchanged between nodes, and during commu-
nication failure the channel filter is not updating because
no information is being exchanged between nodes. Fur-
thermore, because the communicated information in the dis-
tributed mapping problem is the four parameters about each
grid cell, there is no need to buffer a sequence of data to
transmit. Instead, the output message for communication
is simply the cells that have had changes in the local map
since the last communication. If the sensor node attempts,
but fails to communicate, the output message is simply up-
dated to include any new changes in the local map between
the communication failure and a subsequent attempt.

The ability of the channel filter to robustly handle com-
munication failure is demonstrated in Figure 9. The accu-
mulated information for Robot A shows the communication
channel to Robot B is down from 40− 60 seconds. Dur-
ing that time, Robot A is continuing to accumulate self-
information from terrain measurements, but does not receive
any data from Robot B. At 60 seconds, the communication
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Figure 9: Communication failure: Accumulated informa-
tion about the obstacles for each sensor node in the dis-
tributed data fusion network achieves the centralized fusion
node performance with 50% communication failure.

link is restored and the information content jumps dramati-
cally. At the end of the data collection, the robots continue
to attempt communication until they are successful. This
ensures the DDF performance achieves the centralized data
fusion performance by the end of the data collection even in
the presence of communication failure.

6 Conclusion
The distributed terrain estimation algorithm is used to up-

date and maintain globally consistent terrain maps at each
node in a sensor network. The use of the mixture-model
based algorithm for terrain estimation provides compact in-
formation sets about each grid cell to share for data fusion.
The channel filter is ideally suited for the distributed data
fusion using these information sets, because it tracks the
previously communication information and successfully up-
dates each node, even in the presence of communication fail-
ure. The distributed terrain estimation generates dense maps
on each sensor nodes that maintain the metrics about map
accuracy and confidence. The algorithm was successfully
demonstrated using a 60 second data collection in a labora-
tory setting.
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