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Abstract- This paper deals with the problem of coordinating 
a team of mobile sensor platforms searching for a single mobile 
non-evading target. It follows the general Bayesian active sensor 
network approach introduced in [2] where each decision maker 
plans locally based on an equivalent representation of the target 
state probability density function (PDF). This paper focuses on 
the prediction stage of the decentralized Bayesian filter. It looks 
at how different types of realistic external constraints may affect 
the target motion and how they may be taken into account in the 
process model. Two general classes of constraints are identified 
soft and hard. A few constraint examples from each class are 
given to illustrate their impact on the evolution of the target 
state PDF. Multiple constraints of various types can be combined 
to increase the accuracy of the predicted PDF estimate, thus 
affecting the individual trajectories of the search platforms. The 
effectiveness of the framework is demonstrated for a team of 
airborne search vehicles looking for a drifting target lost in a 
storm at sea. 

I. INTRODUCTION 
When rescue authorities receive a distress signal time be- 

comes critical. When lost at sea, survival expectancy decreases 
rapidly and the primary goal of a rescue mission is to search 
for and find the castaways as diligently and efficiently as 
possible. The search, based on some coarse estimate of the 
target location, must often be performed in low visibility con- 
ditions with strong winds and high seas causing the location 
estimate to grow even more uncertain as time goes by. How 
this location estimate evolves and exactly how uncertain it 
becomes in time is the first and foremost important question 
that needs answering before a large team of heterogeneous 
platforms, e.g. high flying long range aircrafts, helicopters and 
ships equipped with multiple sensors could be deployed for the 
search. 

In [2] a general Bayesian active sensor network approach 
to the target detection problem as described in [8] (Chapter 
9) was presented. It expanded the single vehicle framework 
proposed in [3] to an arbitrary number of sensing platforms 
by integrating a fully decentralized Bayesian data fusion 
technique with a decentralized coordinated control scheme. In 
this architecture, each sensor node communicates observations 
on the network and builds an equivalent representation of 
the target state probability density function (PDF). Planning 
is done locally by the decision makers based on the latest 
PDF update and the resulting control actions are consistent 
and coordinated without further communication about the 
plans. A similar control coordination framework based on a 

decentralized information filter can be found in [7]. A high 
degree of scalability, modularity and real-time adaptability are 
the advantages of the decentrailized approach. At any time, 
new rescue vehicles can join the search effort, or momentarily 
quit for refuelling, and the system should seemly and robustly 
adapt to the change. 

This paper deals with the target motion prediction aspect 
of the general Bayesian filter. In  particular it focuses on state 
dependent process models and on how to integrate external 
motion constraints of different types into the prediction stage. 
TWO general classes of constraints are identified: strong and 
weak. A few constraint examples from each class are given 
to illustrate their impact on the evolution of the target sate 
PDF. Multiple constraints of various types can be combined 
to increase the accuracy of the predicted PDF estimate, thus 
affecting the individual trajectories of the search platforms. 

The breakdown of the paper is as follows. Firstly, the decen- 
tralized Bayesian filtering algorithm that accurately maintains 
and updates the target state PDF is described in the next 
section. Then Section ID describes two general classes of 
target motion constraints, i.e. soft and hard, and how they 
can be integrated into the prediction stage in the form of 
state dependent transition probability models. Then in Sec- 
tion IV, the effectiveness of the approach is demonstrated 
for multiple airborne vehicles searching for a drifting target 
subject to combined constraints of both soft and hard types. 
The coordinated solutions for different numbers of vehicles are 
compared illustrating the scalability of the framework. Finally, 
conclusions and ongoing research directions are highlighted in 
the last section. 

11. DECENTRALISED 13AYESIAN FILTERING 
This section reviews the mathematical formulation of the 

decentralized Bayesian data fusion algorithm used to predict 
and update the target state PDF. The Bayesian approach 
is particularly suitable for combining in a rational manner 
heterogeneous non-gaussian smsor observations with other 
sources of quantitative and quallitative information [l], [9]. 

In Bayesian analysis any unknown quantity of interest is 
considered a random variable. The state of knowledge about 
such a random variable is entirely expressed in the form 
of a PDF. New information in the form of a probabilistic 
measurement or observation is combined with the previous 
PDF using the Bayes theorem in order to update the state of 
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knowledge. This newly updated PDF forms the quantitative 
basis on which all inferences, or control decisions are made. 

In the searching problem, the unknown variable of interest 
is the target state vector xi E Wnz which in general describes 
the target location but could also include its attitude, velocity, 
and other properties. The purpose of the analysis is to find 
an estimate for p(xiIz1:k), the PDF of xi given the sequence 
z1:k = { zj : i = 1, ...) N,,  j = 1, ...) k} of all the observations 
made from the N, sensors on board the search vehicles, zj 
being the observation from the ith sensor at time step j. 
The analysis starts by determining a prior PDF p(xhlz0) 
p(xk) for the target state at time 0, given all available prior 
information including past experience and domain knowledge. 
If nothing is known other than initial bounds on the target 
state vector, then a least informative uniform PDF is used as 
the prior. Once the prior distribution has been established, the 
PDF at time step k, p(xiIz1:k). can be constructed recursively 
using two equations alternatively: prediction and update. 

A. Prediction 

A prediction stage is necessary in Bayesian analysis when 
the PDF of the state to be evaluated is evolving with time i.e. 
the target is in motion or the uncertainty about its location 
is increasing. Suppose the system is at time step k - 1 and 
the latest PDF update, p(~i-~lz~:k-1), is available. Then the 
predicted target state PDF at time step k is obtained by the 
following Chapman-Kolmogorov equation 

r 

where p(xklxi-,) is a probabilistic Markov motion model. 
Also referred to as the process model, it describes the probabil- 
ity of transition of the target states. Deriving the process model 
from the equations of motion of the target and the probability 
distribution on their inputs is out of the scope of this paper. 
Instead, Section 111 will show how various types of motion 
constraints might affect the process model and the evolution 
of the target PDF. 

B. Update 

At time step k a new set of observations Zk = {zk, ..., z,".} 
becomes available and the update is performed using the Bayes 
rule where all the observations are assumed to be independent. 
In other words, the update is performed by multiplying the 
prior PDF (posterior from the prediction stage) by all the 
individual conditional observation likelihoods p(zg [xi) as in 
the following 

where the normalization coefficient K is given by 

C. Active Bayesian Sensor Network 
In an information gathering task such as searching, if each 

sensor is connected to a processing unit called a node, then it is 
possible through communication and fusion of the information 
to reconstruct at each node the global information state of 
the world, e.g. the target state PDF. Figure 1 depicts how the 
update and prediction equations are integrated in the general 
Bayesian sensor node of a fully connected network. Mounting 
the sensor node unto an actuated mobile Platform and coupling 
it to its own Controller makes it an active sensor. Based on the 
latest belief about the world P(X:-~ Izi-,) and the sensor state 
x d l ,  the Controller sends a command u2- to the Platform 
to place the sensor in a desired position x2dee with respect to 
the world to take the next observation. 

Sensor Node i 

From all nodesl, j= i  

fi:? 1 a$> 

44 ... 1-41 

To all nodesj, j-i 

, 
Fig. 1. Active Bayesian sensor node algorithm for a fully connected network. 

There is more than one valid way to implement the Bayesian 
filtering algorithm. For example, it is possible to represent the 
the target PDF using parametric functions and to perform the 
prediction and update stage by updating the parameters of the 
function. If the target PDF as well as the process model are 
both Gaussian, then the most effective parametric filter is the 
well known Kalman filter, For the searching problem however, 
the process model, and especially the target PDF can be highly 
non-Gaussian and the complete description of the density 
function must be maintained. In this paper the prediction 
and update equations will be evaluated numerically using a 
grid based discrete approximation of the process model, the 
observation likelihood and the target PDF. 

111. PROCESS MODEL A N D  CONSTRAINTS 
It can be shown that if the process model is invariant 

over the target states, the prediction equation (1) boils down 
to a convolution operation. Practically, this convolution is 
performed numerically by a discrete approximation of the two 
PDF's on a grid, followed in sequence by the multiplication of 
their Fast Fourier Transforms (FFTs), and by an inverse FFT 
of the product to retrieve the result. 

In general, the target motion model is not invariant through- 
out the state space. This is the case when the target motion 
is affected by external constraints. Then, for any given prior 
state the probability of transition, p(xiIxi-J, must 
be described by a distinct probability distribuhon over the 
subsequent states x: and take into account all of the mo- 
tion constraints. In practice, these state transition PDF's are 
evaluated and tabulated in an array containing (nd2)ns ta te  x 
(ndz )nd ta te  elements, where nstate is the number of target 
sates, ndS  corresponds to the number of discrete elements per 
state, and (ndz)ns ta*e  is the number of elements in the grid 
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representing the target PDF. Notice that when the resolution 
and/or the number of states increase, the size of the array can 
become very large. Nevertheless, with careful selection of the 
parameters, the technique can still be applied in a meaningful 
way to a variety of problems. 
h this section, two classes of motion constraints are 

identified. The first group consists of all the strong motion 
restrictions, e.g. motion restricted on a curve or a plane, which 
also includes all kinds of un-traversable obstacles that will 
be referred to as hard constraints. The second type regroups 
all the other motion impeding constraints not included in the 
first, and will be referred to as the soft constraints. A physical 
problem could contain a mixture of a variety of soft and hard 
constraints. 

A. Hard Constraints 
Hard constraints consist of two types of obstacles that are 

not traversable by the target. In the first type, for every given 
prior state, all the probabilities corresponding to state transi- 
tions through an obstacle are set to zero and the distribution is 
re-normalized to a volume of one. Examples of these sort of 
constraints include solid objects too high for the target to cross 
over or un-traversable terrain topology such as cliffs or deep 
ravines. Hard constraints of the second type display what we 
call a 'netting' or accumulating effect. For these constraints, 
all the probabilities corresponding to transitions through the 
obstacle are again set to zero, but the corresponding probability 
mass is integrated and redistributed at the obstacle frontier 
facing the prior state location. Examples of this type of hard 
constraints could include any kind of nets and webs, or any 
other sort of obstacles that can be traversed by the medium 
carrying the target, but not by the target itself. 

The following subsections illustrate examples of both types 
of hard constraints. In both cases, the initial target PDF is 
a symmetric Gaussian distribution centered at (0,O) with a 
standard deviation in 2 and y of 400 meters. The nominal 
unconstrained motion model is also a symmetric Gaussian dis- 
tribution centered around the given prior state with a standard 
deviation in each direction corresponding to 0.5556m/s, i.e. a 
displacement standard deviation of 400m given a prediction 
step corresponding to 12 minutes of simulation. The scale on 
all the figures are in meters. 

I) Type I: Un-traversable obstacle: Figure 2 illustrates the 
effect, through time, of the presence of an un-traversable 
obstacle (e.g. cliff line) on the target state PDF subjected 
to a diffusion process (e.g. walking randomly). The obstacle 
becomes clearly apparent as the PDF starts flowing around it 
(Fig. 2d). Multiple hard constraints can be combined to reflect 
for example a topographic map, a road network, or as depicted 
in Fig. 3, an indoor environment. 

2) Type II: Un-traversable obstacle with accumulating ef- 
fect: Figure 4 shows the evolution over time of the target 
PDF when constrained by the same obstacle as in the previous 
example but with the 'netting' effect. An example of this 
could be a piece of wood randomly drifting on water and 
getting 'stuck' along a protruding obstacle such as a man made 

x 10 x :6' 
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(C) (d) 
Fig. 2. Hard motion constraint of type I (random walk with a cliff line): 
(a) to (d) 3D views of the updated target PDF at step k = 1, 5, 10 and 30 
respectively, corresponding to 12, 60, 120 and 360 minutes. 

4 

(4 - "  
(C) 

Fig. 3. Hard motion constraint of type I (random walk in an indoor 
environment): (a) Occupancy Grid map: (b) to (d) 3 D  views of the updated 
target PDF at step k = 1, 30 and 90 respectively, corresponding to 2, 60 and 
180 seconds. 

floating dock. It is quite clear from the figure that a certain 
amount of probability mass tends to accumulate in front of 
the obstacle which is quite an important thing to know when 
looking for a likely target location. 

B. Soji Constraints 
The soft constraints class includes any kind of traversable 

but motion impeding obstacles, such as marshlands or forested 
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Fig. 4. Hard motion constraint of type 11 (obstacle with netting effect): 
(a) to (d) 3D views of the updated target PDF at step k = I ,  5, 10 and 30 
respectively, corresponding to 12, 60, 120 and 360 minutes. 

Fig. 5. Traversable obstacle (random waUc in the presence of a marshland): 
(a) to (d) 3D views of the updated target PDF at step IC = 1 ,  5, 10 and 30 
respectively, corresponding to 12, 60, 120 and 360 minutes. 

terrain, but also the more general constraints that can be 
described by force vector fields working either for and/or 
against the target motion. Wind, current and terrain topology 
are examples of force field type of constraints. 

I) Example 1: Traversable obstacle: This example illus- 
trates the effect of a motion impeding obstacle such as a 
swamp or a marshland. On Figure 5 (a) to (d), one can see 
the outline of a circular marshland appearing as probability 
mass accumulates in the region where the diffusion process is 
slowed down. 

2) Example 2: Forcejelds: An examples of motion being 
affected by a force field is a drifting target such as a liferaft 
subjected to current and wind fields. Figure 6 shows a current 
field transportation and dissipative attributes on the target 
state PDF. Examples in other applications could also include 
electrical, magnetic or gravitational fields. 

3) Example 3: Terrain topology: This example is much 
related to example 1, but instead of having one distinguishable 
soft obstacle, the whole area displays a varying degree of 
traversability that is a function of the terrain gradient. Such 
a kind of process model could be effectively used when 
searching for hikers lost in a mountainous terrain. Figure 7 
shows the effect on the diffusion process of the mountainous 
terrain illustrated in Fig. 7a. In this example the nominal 
motion model for flat terrain is Gaussian and symmetric. 
Then the variance in all direction is reduced proportionally 
to the slope of the terrain gradient to reflect the slower walk 
progression in steeper terrain. Also, symmetry is broken by 
shortening one axis in function of the cosine of the slope angle, 
and then it is aligned with the slope and projected onto a 2D 
surface. This creates Gaussian motion ellipses with the axis 
aligned with the isocline of the terrain. 

Fig. 6. Force field (drifting with the current): (a) map of the current strength 
and orientation, (b) to (f) 3D views of the updated target PDF at step k = 
1 ,  5, 10, 15 and 20 respectively, corresponding to 12, 60, 120, 180 and 240 
minutes. 

IV. APPLICATION 

Ultimately, the goal of the ongoing research effort is to 
demonstrate the autonomous search framework on a team 
of unmanned air vehicles (UAV’s) (Fig. Sa). A stepping 
stone towards this goal is to investigate the problem using 
simulations. The high fidelity simulator (Fig. 8b) developed 
at the Australian Center for Field Robotics (ACFR) has an 
UAV hardware server complete with various sensor models, 
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Fig. 7. Terrain topology (random walk in mountainous terrain): (a) 3D map 
of the terrain, (b) to (f) 3D views of the updated target PDF at step k = 1, 
5, 15, 30 and 60 respectively, corresponding to 15, 75, 225, 450 and 900 
minutes. 

and wireless communication protocols, on which the flight 
software can be tested before being implemented on board 
the platforms almost without any modifications [4]. The rest 
of this section presents the results for the coordinated Bayesian 
search framework implemented for a team of airborne search 
vehicles looking for a single lost target, a liferaft, drifting in 
a storm at sea and in the presence of a hard obstacle such 
as an island. More about the implementation details of the 
framework and the search problem can be found in 121. 

Figure 9 illustrates the results for a single vehicle greedy 
search, i.e 1-step lookahead control solution. Figure 9a illus- 
trates the constraints composed of a swirly wind field and 
an island. Clearly seen in the sequence from Fig. 9b to c 
is the distortion of the initial Gaussian PDF by the wind 
and the accumulating effect caused by the island. Figure 10 
illustrates the searching results for the same initial situation 
but for a team of three vehicles. On figure 10d it can 
be seen that for this particular case, increasing the number 
of searching vehicles produces better results for the same 
equivalent combined searching time. This happens at no extra 

(b ) 
Fig. 8. (a) The fleet of Brumby Mark-Ill uav’s been developed at ACFR. 
These flight vehicles have a payload capacity of up to 13.5 kg and operational 
speed of 50 to 100 knots. (b) Display of the high fidelity multi-UAV simulator. 

computational cost for the individual decision makers and 
without any communication about their intentions. 

v. SUMMARY AND ONGOING WORK 

This paper addressed the problem of integrating realis- . 
tic motion constraints in the prediction stage of the active 
Bayesian sensor network approach to the search problem. -0 
main classes of constraints were identified and a few examples 
were given for each one. The constraints were demonstrated 
to greatly affect the accuracy of the target state PDF estimate, 
in turn affecting the search trajectories. Work is in progress to 
use ~e constraint description from a human user input. The 
Bayesian framework was demonstrated to adaptively find ef- 
ficient coordinated search plan!; in a completely decentralized 
way. A major appeal of the approach is that nodal computation 
costs are kept constant regardleis of their number thus offering 
a high potential for scalability. 

Because of the nature of the search problem, it is quite 
important to accurately keep track of the very non-Gaussian 
target state PDF. However, any grid based approach such as 
the one presented is intrinsically subject to the “curse of 
dimensionality”, and as soon as one needs to increase the 
search area, the resolution of the grid, or the number of 
dimensions in the state-space, computational costs tend to get 
out of hand. As part of the ongoing research effort, techniques 
such as Monte Carlo methods, or particle filters [ 5 ] ,  as well as 
the so called kernel methods for density estimation are being 
investigated to overcome the clomputational limitations. 

Another limitation of the technique as presented comes from 
the assumption that every sensor node transmits and receives 
every single observation without a miss via broadcasting. Be- 
yond the obvious bandwidth limitations, such assumptions are 
not quite practical in real life since communication systems are 
plagued by delays and intermittent transmissions. To overcome 
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Fig. 9. One vehicle greedy search for a target drifting in a storm with a 
hard constraint: (a) map of the hard consaaint (gray island), mean current 
velocities (strength and orientation armws), and 1, 2 and 3 sigma contours of 
the prior PDF, (b) to (0 3D views of the updated target PDF at step k = 1,s. 
IS, 30 and 60 respectively, corresponding to 30, 150,450,900, and 1800 sec, 
(8) Conditional (solid line) and 'discounted' (dash dotted line) pmJbability 
of detecting-the target on-time step k denoted p(&lq:k-L = D 1 : k - l )  
and p(DklD1:k-1)p(IviDl : k - 1 )  respectively, and (h) corresponding 
cumulative probability of detection Pk . 

this problem, work in progress also involves developing a 
channel filter [6] to allow the Bayesian network to be tree 
connected and hence drastically reduce the communication 
loads that are incurred in a fully connected network, as well 
as allowing intermittent burst communications. 

Beyond the demonstration of the approach on a team of 
UAV's, the ultimate objective of this research is to eventually 
have multiple platforms participating in actual search and res- 
cue (SAR) missions with real-time cooperative planning and 
filly integrated human-robot interactions. The technique has 

x 1 1  x 16" 
R 

Fig. 10. Three vehicles greedy search for a target drifting in a storm with 
a hard constraint: (a) to (c) 3D views of the updated target PDF at step k = 
5, 10, and 20 respectively, corresponding to 150, 300, and 600 sec, and (d) 
the corresponding Pk for the 3 vehicles search (solid line), the 2 vehicles 
900s search (dashed line), and the 1 vehicle 1800s search (dash dotted line) 
compressed on 600s. 

the potential to greatly improve upon current SAR protocols, 
which in turn might be critical in saving human lives. 
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